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1 Introduction and Scope of the Problem

1.1 Foliage above a Rough Surface: An Approach Rationale

When studying scattering from the combination of a foliage layer above a rough surface,

one must deal with the scattering from the foliage, the rough surface, and the interaction

between the two. Of these three components to the fundamental scattering problem, the

foliage scattering and the interaction scattering are definitely the most difficult to analyze.

Foliage by itself presents a real challenge to the analyst because of the many-body aspects

of the problem. In addition, modeling foliage scattering from first principles is further

complicated by the fact that the scatterers are irregular at best and generally ill defined. From

an electromagnetic point of view, leaves do not all look to be identical and twigs, branches,

and limbs conform to no particular shape! Thus, except for very low and very high frequency

limits, it is almost impossible to compute the scattering pattern of the basic "constituents" of

foliage. We do know a bit about the typical volume fraction of foliage and how this is

partitioned between leaves and the woody components, and we have some idea of the range

of complex dielectric constant variation for wood and leaf materials [1]. Yet another

unknown is the variation of foliage density with depth into a canopy. Finally, even though

foliage is quite frequently classified as on the edge of being a volumetrically sparse medium,

this does not mean that there is a lack of strong electromagnetic interactions between the

various scattering components, e.g., twigs, branches, leaves, etc. Furthermore, for European

forests that have been well managed and not logged (also called old growth forests), the

volume fractional density of the biomaterial may be as large as 5%.

When dealing with independently scattering objects and scattering from rough surfaces, it

is possible to convert single-frequency models of the individual scattering cross sections (for

the discrete objects) and the scattering cross section per unit area (for the extended surface

scattering) into models for the incoherent time-dependent scattered waveform produced

under pulse illumination. For strongly interacting individual scatterers, this simplification is

not usually possible, the reason being that it is not sufficient to know that the scatterer is in a

volume because its location within the volume must also be known.



What can be done then to resolve this dilemma? First, we know that we can always extract

an effective "scattering cross section per unit illuminated volume, cv" from airborne radar

data, e.g., the scattered power P, received by a pulsed radar is given by

= Ps (7r) 2  (1)

where the effective scattering cross is given by

a = (cT/2)(RDaz)(R®ei)Cv (2)

Solving (1) and (2) for cv yields

= r (47r) 2 R2v Pt G G2(0i , i) (cT/2)((Daz~el ) (3

In the above equations Pr is the received or scattered power, Pt is the transmitted power,

G2 (0, ) is the two-way antenna gain in the indicated direction, c is the speed of light, T is

the pulse length, R is the range to the volume, O1z is the antenna's azimuthal beamwidth, and

eel is its elevation beamwidth. Of course, some of these factors are a function of time

indicating what portion of the volume scatterers are being illuminated by the incident pulse

waveform as it passes through the scattering medium. Equation (3) is actually an

approximation in that one should integrate over the volume bounded by the antenna gain

pattern weighting and the pulse width extent. The important point is that incoherent power

waveform data from a pulsed radar can be converted into an effective "scattering cross

section per unit illuminated volume". It should be noted that, within the resolution limits

imposed by the radar pulse width and antenna beamwidth, the aCv extracted from the data may

be a function of the slant path distance (R) into the medium.

The next step in the process is to compare these measured data with our models and it is

here that things become difficult. First, as noted above there are no tractable 'first-

principles" models for propagation and scattering by a foliated environment under

conditions of strong interaction (multiple scattering). Secondly, those models that claim to be

"more" applicable to such an environment usually are deeply imbedded with involved and

tedious computations whose physical meaning is marginal at best. This quandary means that
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a decision must be made as to how to best proceed, i.e., an approach rationale must be

developed.

The approach rationale followed in developing the model presented in this report is as

follows. First, it is well known that the end users of such models are extremely skeptical of

any model that does not contain some measurements in its development. That is, they are

concerned that the model be designed so that it is capable of at least reproducing known

measurements. Consequently, we felt it essential to involve measured data in our model. The

second element of this model is based upon the realization that it is possible to develop a

somewhat general model for media that is not too strongly interacting and this model may be

"matched" to data to determine the actual parameters that are embedded in the model and,

perhaps, to extend it beyond its known range of validity. In short, the model parameters can

be determined by matching actual measured data to the scattering results predicted by the

model. It should be noted that such an approach avoids long and questionable computations

based on one's estimate of what actually causes the scattering and how it does this. The

reason for avoiding such computations is very simple - there is no way to estimate how

applicable they will be since the accuracy of the overall model is unknown. By matching the

model to data, we are in effect extending the model's accuracy through the use of "effective

parameters" that are "calibrated" by the data. In summary then, our approach has been to do

the best we can to develop a model that is accurate but not overly (computationally) detailed,

match it to measured foliage scattering data to generate the model parameters ("effective

parameters"), and then investigate the accuracy of extending the model to other situations

using the existing "effective parameters".

The remainder of this report details efforts to develop the "best" model that we can for the

foliage and its interaction with the terrain using the above rationale. We emphasize that while

it may not be esthetically pleasing to have to resort to measurements to truly complete the

model, this guarantees that the model parameters derived from the data will be valid and, in

fact, may compensate for certain deficiencies in the model. Given the end-goal of predicting

foliage scattering and penetration and trying to come up with new methods/techniques to

penetrate foliage, such an approach as this may be the most appropriate!
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1.2 The Major Contributors to the Retum Waveform

Ideally, in estimating the returned signal from foliage covered terrain, a scattering model

will include self and mutual interactions among the constituent components. In the following

sections, a brief description of each significant interaction will be presented. The presentation

in these sections will follow the integral equation approach.

We begin by considering the incident field, E", that exists in free space in the absence

of the foliage and the surface, see Figure 1. With introduction of a scatterer, i.e. foliage, the

total field is found to be a superposition of the incident field E and the field scattered by

the scatterer, Es.

_total . _inc + Ts

Consequently, our first task will be the construction of the scattered field produced for the it

scatterer, E, of the N objects which comprise the volume of scatterers.

E

6' 6' 'Z0 % F oliage

inc
E

Figure 1: The Incident Field
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1.2.1 Scattering from a Volume of Discrete, Closed Body Scatterers

Each component of the foliage (leaves, twigs, branches, etc.) will scatter energy from the

incident field. Isolated, each scatterer's effect can be assessed using an integral equation

approach that leads to a method of Moments (MOM) formulation. Consequently, the

scattering solution is found in terms of a vector scattering pattern with respect to the incident

field and the incident field's angle of arrival. This scattering pattern is then used to construct

the scattered field due to an object. Typically, the scattering pattern is derived using the far-

field approximation and assuming an incident plane wave.

Considering a volume of N scatterers without mutual interaction, the scattering patterns

of the individual members can be used to construct the volume response in the direction of

observation. When the location, shape or size of the individual scatterers are uncorrelated, a

simple summation of the scattered power waveform from each scatterer is possible. This

describes the results of the single scatter theory and first order multiple scattering, see

Appendix A. First order multiple scattering plays a central role in the model proposed in this

report. It is presented in a general form in Appendix A and a restricted form in Chapter 2.

If multiple scattering within the volume is expected to play an important role, interactions

among the discrete scatterers must be considered. An exact solution would consider not only

the scattering from each individual object, but the full interaction between them. One method

of solution that accounts for full interaction between N objects is the solution of the

associated N-coupled integral equations. Using the equivalence principle, the scatterers may

be replaced by equivalent currents that radiate in free space. In addition to the requirement

for more computing power than is commonly available, the exact solution for the N-coupled

integral equations for propagation through the foliage would require an abundance of detailed

data and a number of realizations to create acceptable averages. Consequently, some

approximations must be made.

The reduction of the problem for backscatter and propagation through the random foliage

can be achieved in several ways, depending on the level of interactions to be included. For

propagation of the mean field, approximations in the literature include, but are not limited to

the following
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" Single scattering theory (see Appendix A)

" First order multiple scattering theory (see Appendix A)

" The Foldy-Lax-Twersky Integral Equation

Higher order moments of the field can also be handled by forming the proper moments in

the first two cases. These higher order moments are necessary in order to account for the

propagation of pulses. Twersky, among others, has developed integral equations that describe

the higher order moments which include some level of multiple scattering [Ishimaru, 1997];

various approximate solutions exist for these equations. In addition, there are also hybrid

techniques, such as the Distorted Wave Born Approximation (DWBA) [Lang, 1981]. Lang

used the Foldy-Lax-Twersky Integral Equation in order to establish the mean field; he then

used the single scattering theory for particles immersed in an equivalent media derived from

the mean field to find the second moment. Our approach is similar to this DWBA approach.

Whether single scatter theory or multiple scatter theory is used, we will construct a

composite scattered field, E', due to the volume of scatterers, see Figure 2. In the integral

equation formulation, the scattered field results from an induced current, Jn, on each of the N

scatterers, see Figure 2.

j .. .. ~....... . . . ...... . ....... , . ................. ............. ............ . .. . ..

Figure 2: The total incident field with respect to the surface

Initially, we present a derivation of the scattered field from the volume using a reduced form

of the radiative transfer approach that results in a form of the first order multiple scattering
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result; see Chapter 4 and Appendix A. The limitations of this result are discussed at the end

of Appendix A in the context of the first order multiple scattering results.

1.2.2 Scattering from a Rough Surface

To model the multiple scattering that takes place along the surface, there are several

techniques available. Numerical implementations typically use the integral equation

formulation. 'Given a field incident on a statistically rough terrain, the integral equation

technique, typically numerically implemented with the Method of Moments (MOM), can

yield exact results for a given realization. Average results for a collection of realizations are

found using Monte Carlo methods. A solution method for the MOM formulation that is of

interest in this report is the Method of Ordered Multiple Interactions (MOMI). It will be

explored in Chapter 4 and is used to verify some assumptions in the model developed in this

report. Analytical results, including Kirchhoff and perturbation approximations, may be

useful in an analytically reduced integral equation formulation discussed in Chapter 4.

A time dependent analytical approach for the calculation of the incoherent power

waveform from an extended rough surface that is consistent with the single scatter approach

is the Impulse Response Method. This method is derived under the assumption that there

exist a continuum of scattering facets on the surface that reflect a radar power waveform

[Brown, 1977]. Under certain assumptions, the return power from each properly oriented

surface facet enters into a summation. The number of these properly oriented facets per unit

area of the surface defines a cross section per unit area. Chapter 2 presents a brief discussion

of the impulse response method for calculating the scattering from terrain in free space, i.e.

no foliage cover.
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1.2.3 Interaction between the Foliage and the Rough Surface

Regardless of the modeling method used for the terrain and the volume scattering

individually, there will be an additional source of multiple interactions (or multiple

scattering): the interaction between the volume and the surface. Once the field scattered from

the surface, E', due to the currents induced on the surface, j is calculated, it can act as an

additional field incident upon the foliage on its path back through the foliage to the radar. See

the field E' in Figure 3.

fil

Figure 3: Surface to Foliage Interaction

This single passage (from foliage to surface, and back to foliage) does not account for

the full interaction between the current induced in the foliage and the current on the surface.

This single passage approximation to the interaction between the foliage and the surface

represents a single interaction: the foliage-scattered field that creates the surface currents is

due only to the field incident from the radar. This approximation is explored in Chapter 4

through a comparison with the exact results for a single scatterer above a rough surface. A

full interaction formulation requires that the currents on the surface and on each scatterer in

the foliage be coupled. Additional interaction terms would include corrections to the foliage

currents due to the surface scattered field that, in turn, will produce corrections to the surface

currents: an infinite series of these corrections will produce the full interaction results.

... .......



Alternatively, a coupled integral equation formulation relating the induced currents will also

produce the full interaction result; this method for verification is explored in Chapter 4.

Assuming that the integral equation approach is followed, the solution for the passage

from the surface through the foliage can be formulated using the equivalence principle. The

surface current, J, is permitted to radiate in free space and the resulting field acts as an

additional incident field with respect to the foliage. Hence, the surface scattered field, E',
-s nth

will induce a corrective current, Jsn, on the n scatterer which must be vectorially added to

the previous current. This current radiates a second field scattered from the foliage, E',, in

addition to the scattered field due only to the foliage, Es. See Figure 4. This is a first

approximation to the foliage-surface-foliage interaction.

A second order correction to the surface current will treat the incident field on the

surface as

-on surface = + + Efs

Consequently, a new surface current Js is found. This current will produce a new value for

the surface scattered field, E' , and a new value for the field incident to the foliage from the

surface* Continuing this process of iteration will produce the full interaction result.

Alternatively, like the first passage through the vegetation, this second field scattered

from the foliage, Es , can be found using the single scatter approximation. This result may

also be iterated, correcting the surface currents producing scattered fields. However, this

result will suffer the limitations of the single scatter theory as discussed in Appendix A.
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1.3 Goals of this Research

The goals of this research are to produce a numerically efficient code which can

incorporate measured data for calibration and accurately reproduce the general trends of an

average returned waveform fr'om terrain and foliage with similar statistics and constituents as

the calibration data. Numerical efficiency is best served through the use of the impulse
response approach, which casts the returned waveform into a series of convolutions and uses

empirically derived parameters. Through its relation to first order multiple scattering theory,

this model was found to incorporate some limiting assumptions. These assumptions are

discussed in Appendix A. In order to test these assumptions, the generalized form of the

radiative transfer result, first order multiple scattering model has been expanded to simulate a

single scatterer over a rough surface. Some of these assumptions are quantified to a certain

extent in the later sections of Chapter 4 by comparison with the "exact" numerical results.

Although the simplest model, the radiative transfer result, described in Chapter 3, may not be

totally adequate, at least some aspects of the convolutional formulation may be validated. In

addition, the convolutional form has been retained through the use of the more general first

order multiple scattering theory found in Chapter 4 and Appendix A. This development

represents the major thrust of the work remaining to be done in order to verify the fully

convolutional result.
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In addition to verification via the first order multiple scattering, alternate formulations

that incorporate more multiple scattering elements are discussed in the later sections of

Chapter 4, including a reduced integral equation result. Finally, it is postulated that the

results generated by a first order multiple scattering result, using Foldy-Lax-Twersky integral

equation for the mean field to find the effective media, will adequately approximate the

results of Lang [1981]. Consequently, a comparison with Lang's results from the Distorted

Wave Born Approximation (DWBA) will be necessary. This effort is important to better

understand the limitations of the model and for model verification.

11



2 Estimating the Isolated Surface Return Power

2.1 Integral Equation Formulation of Rough Surface Scattering

and the Method of Ordered Multiple Interactions

The integral equation governing both the TE and TM polarizations in the 2-D scalar

problem has been derived in many sources including [Ishimaru, 1994], by many different

techniques, such as equivalence and the use of Green's Identities. Green's second identity

is given by

f(F)= fi () + s f(F') n' G(?, ') ds', r E V (1)

In (1), V represents a certain volume in space surrounded by the closed surface S and S.,

as shown in Figure 5.

z V'

finc¢ (F) V S,

Figure 5: Problem Geometry for the Derivation of Boundary Integral Equations

Referring to Ishimaru [1994], an intermediate result derived by these methods is our

starting point; we start with the following integral equation relating the total scalar field,

f(F), at the observation point, F, to the incident field, fi (f):

f(F) = 2f' (7) + Jf(Y') aGn', F)') _ dl', Y ( C (2)
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where the contour integration is taken over a boundary enclosing the source and

observation points consists of a hemisphere at infinity and a contour along the rough

surface; see Figure 5.

The Green's function, G(f,f), and its normal derivative are chosen such that their

contribution is zero at infinity; hence, only the integral over the surface remains. This

integration over the surface is reduced in its support by limiting the illuminated region to

only a portion of the surface by use of a tapered beam. A more detailed description of this

process can be found in many sources including Kapp and Brown [1996].

For 1-D surfaces, the contour length may be projected onto the x-axis. This reduces

the integration to an integral over one Cartesian coordinate. Hence, employing the

transformation

dl'= V1 + C2 (x) dx' (2)

we can construct the governing integral equations in rough surface scattering. First, the

Electric Field Integral equation (EFIE), can be derived directly from (1) by enforcing the

following boundary condition on the perfectly conducting surface: f(f) = Ey (F) = 0. This

results in the following first kind integral equation applicable for TE polarization.

_ jg,) G(1, T) + Vx') dx' (3)

In deriving the Magnetic Field Integral Equation (MFIE), the following boundary

condition is enforced: the normal derivative of the tangential magnetic

field, af(') / n' = aHy (') / n', is zero on the surface. This results in the following

second kind integral equation applicable for TM polarization.

Hy (Y) = 2H ff + G Y (-,r') 1 + Vx,(x')dx' (4)

-o

In order to express the equation governing the TE polarization in the form similar to the

MFIE, we take the normal derivative of both sides of (3) along the unit normal fi defined

at the observation point f . Then, we eliminate the weak singularity of the normal
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derivative of the Green's function through a limiting process [Ishimaru, 1994]. This

yields the following second kind integral equation for the TE polarization

aEy(Y) = 2 aEly(Y) 2aEf(f) aG(?r')-h 2n 2-- 1+ (~ x 5

The discretized versions of the above equations, when properly sampled, yield large, full

matrices that scale as the number of unknowns squared. Scattering from a rough terrain,

formulated with this integral equation approach typically was limited to small surfaces or

narrow incident beams due to the matrix storage and inversion requirements of the

conventional method of moments (MOM). Solving the integral equations numerically via

the Method of Ordered Multiple Interactions (MOMI), however, has reduced this

computation time and storage without approximation [Kapp and Brown, 1996]. Rewriting

the above form of the second kind integral equations as

J(x) = J (x) + JK(x, x')J(x')dx' (6)
D

where J(x) is the unknown surface current, K(x, x') is the kernel or the propagator, and

J (x) is known, the Kirchhoff current. Although the domain of integration D is infinite

by design, it can be made finite with the use of the appropriate tapered incident field. For

the TE and TM cases, respectively

J'(x)=2 aEy(x'z) ,, J(x)=2H ,(x,z)Z=(X)an

J(x') aE(x',z) 1 , , J(x') = HY(x',z') z,=x,)

oGx ' _ -aO(x, x')-,1+¢ x x'
K(x, x') = -2 JGxx'0 1 + V: (x') , K(x, x') = 2 + Vn'

an n

After discretizing the resulting second kind equation and expressing it in a vector-matrix

form

J = Ji + pj (7)
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In (7) both J (unknown) and j (known) are vectors and P is a square propagator matrix.

The discretization is commonly carried out by taking values of surface height, current and

propagator at the uniform grid {Xm} of N discrete points separated by the spacing Ax. In

this case, the mth element of each one of the above vectors and the (m,n)th element of the

propagator matrix are given by

J.= J(Xm), J' =J(Xm) and P.=P(Xm,Xn)Ax.

The off diagonal elements, Pmn with m~n, of the discretized propagator matrix P are

given by

P =-2 ~G(xmXn) 1+xX), P =2 aG(x'xn) x1+(x,)
am  0a

where Xm = (2m - 1)Ax - N Ax/2, m = 1,..., N (observation point on the surface)

Xn = (2n - 1)Ax - N Ax/2, n = 1,..., N (source point on the surface)

for the TE case and the TM case, respectively. The diagonal elements (usually called
"self terms"), however, require special treatment and are given by, [Toporkov et. al,

1998],

Pmm = xx(Xm) Ax.

27[1 + 2 (Xm)]

The upper sign corresponds to the TM case and the lower sign to the TE case and

4,xm) is the surface curvature at the point.

Direct matrix inversion becomes prohibitively large, requiring the storage of the

NxN propagator matrix, where N is the number of unknowns. Furthermore, the

computation time for LU decomposition scales as N3/3+N2 -5N/6 [Kapp and Brown

1996]; here decomposing the original propagator matrix results in a lower triangular

matrix, L and an upper triangular matrix, U. The MOMI approach to the scattering

problem recasts the integral equation into a discretized form that is amenable to solution

via simple forward elimination and back substitution without the enormous memory
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requirements of LU decomposition. After some manipulation, the discretized MFIE can

be written in the following form

J = [I-U-'[I-L-'J' + [I - U'[I- L'LUJ (8)

Although it appears that matrix inversion is still needed to solve (8), it can be shown that

alternating forward and back substitution may solve this equation. The first term, JB, has

been called the "new Born term". The following is a general iterative solution whose first

term is JB and the remaining terms are

J = i I [I - U]-l [- Lj-'LU }n[I - U]-I I- L]-Vj (9)
n=O

The "new Born term" (n = 0) contains all orders of multiple scattering which are

continuously forward scattered, continuously backward scattered, and those which are

first forward scattered and then backward scattered. Numerical simulations have shown

that the "new Born term" itself is adequate for most practical surfaces. For very rough

perfectly conducting surfaces, a maximum of two MOMI iterations has typically proven

to be sufficient.
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2.1 The Incoherent Power via the Impulse Response Method

The use of the impulse response method has been well established in literature for the

calculation of the average incoherent power returned from the ocean surface under pulse

illumination. One of the advantages of this approach is numerical: the average return

power can be recast into a series of convolutions. The result, consequently, is found

easily and efficiently using the Fast Fourier Transform, the FFT.

The power due to an incremental area with a given backscattering cross section is

derived directly from the radar equation. Subsequently, extending this power to include

the effects of the entire surface will lead to an expression for the returned power [Brown,

1977]. The average power returned from an element of area, dA, with a cross-section per

unit area a'(0, 4)) is given by the standard radar equation; see Figure 6.

PT (t) 2G2 (0, 7)0 (0 0) dA (1)

(4c) 3R 4

where R = range from the radar to the elemental area, dA

G(0, 4) = antenna gain at the given angles

h

R ro

Figure 6: The Geometry for the Impulse Response Method
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The average power returned from a distributed target, such as the terrain in this case, is

calculated by a superposition of backscattered power from each elemental surface area,

dA. A superposition of power is appropriate since the scattering surface is assumed to

have a sufficiently random nature; there is no coherent return. The average backscattered

power returned from the illuminated surface can be written as

2 n 2P t-2 (r° y ec ))

PR(t) = (4,)3 J0. -(roc-K G2 (0,d)a°(O,o) pdodp (2)

where the slant range to the terrain has been re-written: R = r0 - (x, y) sec 0. Since the

integration is over the flat surface, cylindrical coordinates can be replaced with the radar

coordinates (r. = p2 + h2  => r0 dro = p dp), and the range to the surface can be

approximated by the mean range for the evaluation of amplitude terms. Hence, the

returned power can be re-written

2't (t_ 2 (ro - (x, y)sec 0))PR () ='o -c G 2(0, ol) c°o(0, ob)ro do dro  (3)
R(t) 0 0 ro

The average power returned from the surface can then be found by evaluating the

expectation with respect to the surface heights.

00 k2 - cPT(
t _2 (r° - (xy) sec 0))

JPR(t)) -- 4) 3 fo rfc° G 2
(O',c)o°(0, o) ro do drop()d

Introducing the change of variables,

(xy) = 24(x,y)sec0 () c 0 co
c 2 sec 0~ 2secO~

we express the average returned power as

._ t 2r Y)

(R (0 )17t3fff c°4 pZ d4 G 2 (0, o) o (0, ) ro dop dro
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Recognizing the convolutional form in the random variable, , we re-write the power

received as

- ( 2rj® )Pt cr.(PRt) 27 c0  G 2 (0, )a0(0,+)dro (4)
(4 )' 0

Substituting for the constant delay term,

t= 2r,
co

and introducing the shifting properties of the Dirac Delta Function, the power received is

written as follows

_ 1 2  PT(t-t') P (t-t')G2(0, 4)ao(0, 4)d dro 8t,_2ro dt'
0 0 r 0

_ 047) 0 ro3  co

Consequently, the average scattered intensity from a rough surface can be expressed as a

series of convolutions

(Pr (t)) = PT (t) ( P (t) 0 PFS (t) (5)

From equation in (5), the last term represents the average backscattered power from a

transmitted impulse function and has been called the "Flat Surface Impulse Response"

(FSIR)

PF 106( 4 aG (0), d )Cyo(0), )dA  (6)
PFS~t f surface ro
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where: 8(*) = a Dirac delta function which accounts for the two way
propagation delay

= wavelength of the carrier

G(O, ) = radar antenna gain

a(O, ) = surface scattering cross section per unit area

dA = elemental surface area, dA = rodrodo = pdpd#

ro = slant range from the radar to the mean surface at dA

h = radar height above surface
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3 Estimating the Return Power Components

3.1 Introduction to the use of a Radiative Transfer Approach

A full wave approach to the multiple scattering problem presents many analytical

and numerical challenges even in tenuous, i.e. sparse, media; consequently, the simpler

ideas and the more tractable numerics of radiative transfer present an appealing

alternative. However, since phase information is lost, the multiple scattering phenomena

described by transfer theory are not well understood. In addition, transfer theory may

only have a certain range of validity. There exist at least two different levels of modeling

the environment in radiative transfer theory. The first and most abundant in the literature

is a level that can become quite detailed. Typical examples of this are found in references

[Ulaby, 1990] and [Karam, 1997]. The second approach treats radiative transfer as a

theory that deals in bulk media and effective parameters. A typical example of this

approach would include Schwering [1985]. In this section, we present the formulation of

a simple radiative transfer model for predicting the return power waveform from a rough

surface with a vegetated cover that is based on measured parameters.

A computationally efficient method for the determination of the scattered power

density can be found in [Brown, 1977] for a rough surface and [Newkirk and Brown,

1996] for a rough surface covering a penetrable volume. This approach creates a

numerically efficient method since the incoherent return can be cast as a series of

convolutions. Henceforth referred to as the Impulse Response approach, this method as

applied to rough surfaces has been briefly reviewed in Chapter 2. Although the Impulse

Response approach was originally derived from the radar equation, it leads to a volume

return waveform that can be derived from radiative transfer theory [Adams and Brown,

1998a]. This idea will be extended to the volume response of vegetation over a rough

surface in the next section.
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3.2 Derivation of a Volume/Surface Impulse Response Approach

The geometry for the radiative transfer approach is given in Figure 7 below. In this

figure, the first two boundaries' (enclosing the canopy) height statistics are described by

the same random variable, 4(x) and the third (rough terrain) boundary's height statistics

are described by the random variable, (x). The mean heights of the layer boundaries, d,

and d2, are deterministic distances. Hence, we have implicitly assumed a zero mean

surface with a layer of vegetation whose average thickness is dj. This vegetative layer has

mean height above ground equal to a constant, d2.

h

Foliage Boundary

Free space d2 r3. ,.

--- - ---------- ----.. .. .--------------- ---- --- --- ---- ----
Rough Surface

Figure 7: the geometry describing the volume and surface. Note that dotted lines

indicate average levels for the associated boundary.

Beginning with a general form of the radiative transfer equation for the incoherent

power density or the intensity in the medium, a simple form of the radiative transfer

equation amenable to solution via convolution will be derived. The geometry for the

general radiative transfer equation is given in Figure 8
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~ds

Figure 8: Scattering geometry for the intensity [Ishimaru, 1997]

Assuming that the scattering process is polarization insensitive, we will use the scalar

radiative transfer equation, which relates the differential change in the power density over

volume ds. This is written as (including the time dependent variation)

- r;,t PIsrt) .-t ffp(§, ')I(9';7, t)do)'as = -pcI(; ,t) + 4 4

+Js(;) 1I(9;Yt)
c5 (i) at

where

* I( 9; F) is the power density in the 9 direction at the position: r

* 9 is a direction of the power density

• p is the scatterer density

* a, (Y) is the scatterers total cross section which is the sum of the absorbing and

scattering cross sections: at(f)= Uabs(?)+ ac,(?)and as written here, may be a

function of position f.

* p(s,9') is the scattering function of each scatterer; (prime denotes incident

direction(s)) and is related to the amplitude of the field scattering function squared.

* J, (9;F) is the source function (emission sources)
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Referring to equation (1), the change in power in the f direction is proportional to the

power incident on the differential volume element. This power is then depleted by

absorption as well as scattering into other directions. On the other hand, the power, as it

propagates through the differential volume, increases by an amount due to scattering into

the f direction from other directions f' as well as energy emitted inside the differential

volume:

We can now derive an impulse response representation by making the following

assumption regarding the scattering function (or classically, the phase function), p(f, f').

It will be assumed that each scatterer scatters energy in the forward and backward

directions, exclusively.

p(g,) = 2 [ (g, + cbS(g'+g)
aYt

where af and ab are the position dependent forward and backward scattering cross section

of each scatterer, respectively. These may be functions of depth into the media, shown

explicitly by the f dependence, as well as the scattering angle. In addition, we will

assume that there are no emission sources present; consequently, the source term,

J(g;Y), is zero. This is a good assumption for active sensing techniques [Ulaby, 1986].

With this scattering function assumed, the radiative transfer equation is recast into a

greatly simplified form. Since the direction of power density propagation 9 has been

limited to the radial direction, f, the equation governing the power density can be written

as a first order partial differential equation in two variables: time and distance. Implicitly

assuming the Y dependence in the cross section parameters, the simplified equation of

transfer becomes

0 I(f;1, t) [1li? )+OI-J ___ I(_ , __, t)ar f - p atI(; f, t) + P [afI(; F, 0 + b(-; "I(F , t)
ar c,(F) at

In order to further simplify the equation of transfer, we split into it into two parts:

downwelling, that power density which propagates in the forward hemisphere and

upwelling, that power density which propagates in the backward hemisphere as defined

by the direction of propagation, f.

24



Let us first consider the downwelling intensity. In its solution, we will assume that

the upwelling power density does not act as a source for the downwelling power density

or ab(r) = 0. At this time, we consider this event to be second order scattering that may

be neglected. Next, we define an effective extinction coefficient per unit volume

ke () = pt (F) -p af (i). We then assume a media that is radially distributed which

results in the modified effective extinction coefficient: ke (r) = p ut (r) - p af (r). Hence,

implementing these assumptions, we find the greatly simplified equation

a I(f;i,t)= r , _ 1 I(i ;i,t)

ar cs(7) at

Since it has been assumed that the upwelling power density does not contribute to the

downwelling, there is no coupling of power from the upwelling into the downwelling.

Consequently, given an initial power density at the upper foliage boundary with free

space, Io(t - t') where t' is a range dependent delay, the solution for the downwelling

power density is found in closed form. The method of characteristics yields a time-shifted

argument for the power density, while the distance dependence can be found by simple

integration.

I(f; r, 0, C0 1t)=I, ( Co 1, cd-(0 exp{ - k () d. } (3)

where Io (t - t') is the time-delayed incident power envelope; the time delay is a function

of the range in free space from the antenna to the canopy (ri) and the range into the

medium which may have a range dependent group velocity, cs(r). Note that the

downwelling power density is directed in the f direction or along a radial path from the

source antenna.

The differential equation governing the upwelling power density has a similar form;

however, the downwelling power density acts as a source for the upwelling. In addition,

the upwelling power density is directed in the - i direction or along a reverse radial path

toward the source antenna. Consequently, the governing differential equation is the same

with the exception of the coupling term relating the upwelling and the downwelling
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intensities. The differential equation governing the upwelling power density is expressed

below.

a(-;,t) =_ 1ke(r) I(-^; t) + ab (r, 0, )I(f; r, t) (4)
i9r C, (i) a t

Subsequently, substituting the solution for the downwelling power density into equation

(4), the following differential equation is created governing the upwelling power density

aI(-~;?,I a 1(4~, , t)
, ,= e(r) I(-i; r, t) - c ( - t)a r c s ( f)  a t( 5

+ ab(r'0" )IO(t- rL -" e - (I)d} (5)

The attenuated downwelling power density that passes through the foliage layer and is

subsequently scattered by the underlying surface acts as a source for the upwelling power

density at the foliage layer's lower boundary. In addition, the downwelling power density

continuously contributes to the upwelling power density due to the coupling term. Note

that this source was absent in the differential equation for the downwelling.

Consequently, in formulating the solution, the upwelling power density has two

independent sources: the power waveform backscattered by the surface and the

backscattered downwelling power density from within the volume. Finally, the upwelling

power density is evaluated at the top of the canopy (r = r1). Again, invoking the method

of characteristics as a solution method for the time dependence, the resulting solution of

equation (6) has two independent terms

I(icYr ,, ,t)= (0,0)Ij. t-r -2f dg ep 72 ()~ dg
o0 )(6)

+f ab (a)'o t - 1 -2f dg e {2 (g d d

where

c (0, 0) = ar (0, 4) dA, the surface's scattering cross section
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r, = rl0 + 4(x) sec 0

r2 = rl0 + d, sec 0 + 4(x) sec 0
r3 =ro +(d I +d 2)sec0+ c(x)sec0

This expression shows a simple superposition of two terms; the first term is the rough

surface return propagated back up through the foliage and the second term represents the

foliage scattered return. In order to construct the average return power in the impulse

response format, these two responses are averaged and manipulated to yield an impulse

response term in each case. However, an additional assumption is necessary for a fully

convolutional result similar to that given in the literature for a rough surface alone: the

random variables, (x) and 4(x), describing the canopy and the rough surface,

respectively, must be assumed to be independent.
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3.3 Incoherent Scattered Power: the Volume (Foliage) Return

In the formulation of the scattering from a rough surface with a vegetative cover, we

have assumed that scattering occurs exclusively in the forward and backward directions;

this implied that the power density in radial direction f does not interact with the power

density in any other radial direction. This in turn has led to a closed form result for the

downwelling intensity and consequently, an uncoupled relatively simple equation for the

upwelling power density, equation (6) in the previous section. The two terms of the

solution in (6) can be simplified independently. Each represents a different scattering

phenomena, surface and volume scattering. In this section we examine the foliage or

volume return.

We begin with the second term of equation (6) for the upwelling power density, the

volume response. After substitution for the slant range variables (ri, r2, ...) with the

associated distance and random variables as a function of antenna pointing angle, 0,

r1 =ro + 4(x)sec 0

r2 = 1 o + d, sec 0 + (x) sec0

r3 =rIO + (d1 + d2)sec 0+ (x)secO

the power density is found to be approximated by the following

I(~r,0, t) = f1,O+44(X):cG+dl sec@ aybcLexp{ 2f. e(i) dp

(1)

y r,)+ x sec +0)x-2edec do:

In general, following a slightly modified version of the method of Adams and Brown

[1998a], and assuming a layered media with parallel boundaries, the average power

density can be expressed as

(I-;r, 0,, +) 4ro+( )sece+ d~secO exJ-2frk (g) dji
J r°*+(x)SeC8 Gb (a)exp - 0 +((x)sec9,o(2)

I2(-28Jr 10+)sc )-2e ) dp,( Jd4

28



In order to create a convolutional form, the integration limits must be extended to

infinity. The upper limit may be extended to infinity by assuming that the extinction

coefficient becomes very large once the range extends beyond the lower foliage

boundary; this will effectively eliminate the volume return after the lower foliage

boundary is surpassed. The lower limit of integration, on the other hand, can be extended

by the use of the unit step function, u(r - r1). Consequently, the average power density can

be rewritten in terms of integrals with infinite limits. Under the change of variables,

.' = p.- [r1" + 4(x) sec 0], the expression for the upwelling power density becomes

(I(-i;r,0, p, t)) = f Jab(c 0Io t (r0 +-(x)sec0) - 2f 0rlo+(x)see1 dp.'

exp{- 2[ .s- (x)sec6] k(g.')dg.' }u((X- [r1. 0 + 4(x)sec 0])dccp ( )d

(3)

Assuming that there is no volume return from the atmosphere between the antenna and

the foliage crown, the backscattering cross section, which is a function of distance, can

also be shifted by the slant range. Defining two new functions

g(y) = 2 d (4)
0a c(p.'-)(4

E(y) = ab(Y)exP{ 2ikej(t')dt' u() (5)

the average upwelling power density at the upper foliage layer can be rewritten

(1(-i; r, 0,' t))= -o ff10 t  co r - g x-r E ( x-rp)d cp j ( )d4 (6)

where it has been previously defined that r1 = (r0 + 4(x) sec 0). Following the method

of Adams and Brown, [ 1998a], the following definitions are constructed which transform

distance into time
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t' = g[c -r.] (x - r, = g -'(t')

dt'= g'[cx-rj]da g'(g-(t'))da

Substituting these expressions into the average upwelling power density of equation (6),

the average upwelling power density is reconstructed in the following form

(I(- ;~ ~ 1 r,0 ) ) -- t- -o t'og(g-'(t'))E~-~')d' d

(7)

f~~~ f E71 t (t') dt'p (~d

where a new function has been defined:

E(t) - E(g-'(t))
g' (g- (t))

Noting that expression (7) contains a convolution in the variable z, we perform the z

integration, leaving the result in the form of a convolution (with convolution represented

by the symbol: 0) shown in brackets below

Substituting for the slant range in terms of the distance to the mean height and the

random variable representing the distribution about the mean, i.e. r, = (r10 + (x) sec0)

I(-f;r=r,,,,t))= - {I.( t (r c0 + ( e ®E t (r7 0 + (x)sec0)

First, we substitute for the constant delay term: we let

to =0I
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Then we make a change of variables with respect to the random variable representing the

crown height statistics; we form a new random variable and its associated probability

density function

(x) = 4(x) sec0
cO

secO sec 0

Consequently, the average upwelling power density becomes

(I(- ;Sr= r',0,+,t)) f c % {I(t -to - )®E(t -t o - }p(d
sec 0 -

Again, the average upwelling power density is re-expressed in the following

convolutional form with respect to the modified surface height random variable

I(-i;;r=r,0,0,t)) = sc 1(t -t 0 )®E(t -t 0 )®p (t -to) (8)sec 0

Finally, in order to find the total power returning toward the radar, we integrate the power

density over a surface. In this case, a convenient surface is the top of the canopy.

Allowing for full penetration of the incident power density (i.e. no reflection from the

boundary separating free space from the foliage), we substitute for the incident power

density at the canopy (expressed in the { } brackets below) weighted by the antenna gain

G(O, 4)) in the direction (0, 4)),

i 0 (0,,to) _ G(0,)) PT(t -to)

Furthermore, we must assume a narrow beamwidth such that sec 0 t sec 0o (boresight

direction: 00). This is required since the integral to be performed over the radial

coordinate implicitly contains 0 dependence; otherwise, a convolutional form can not be

obtained. Allowing for the additional delay due to the transmission back to the antenna

(an additional to) from the canopy and the receiving antenna's effective aperture, the

following result is obtained
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o27c (o -to
(P0 se- o0  rt -2t,,j®E(t -2t)O®pt -2to)

X2G(O, 0) dd
(4 

r)2 r.2 T0 
o

substituting the original expression for to, we find

(PR(t)) : se0, 4 ) P, t _Et _ 2rt ( 2r 2  
°  G(O, d

secO00 0 0 47rjII co c, I co ) 47CY2r 0 dr 1

-r co 7f f 3o, PT ( t - ®FEt- p &hp t #. r10
(47r)3 sec 00 0 0 17r10  c0  co ) co )

Exploiting the shifting properties of the Dirac delta function and rearranging the resulting

integrals yields

(rRI W) f° J P( t -t')®E(t -t')®p (t -t')<PRt) =(47c:)' seec0,_-0

f (, 6 t', 2rio dodrodt'
0 1 0  cO

= f{PT(t -t')®E(t -t')®p(t -t')}Ps,(t') dt'
-00

=PT(t )OE(t )pj(t )OPSs,(t)

where the transmitted power waveform is given by PT(t) and the modified Flat Surface

Impulse Response function (see Chapter 2) is given by

,k2 C .27zG 2((O,0) 8t_2r10 dor,
'PF' (t)= 0 fJ f 8ft- Idd (9)

(47c)' sec 0o o r0 CO

the modified probability density function for the crown height statistics is given by
s _ 0 ( cot

= ssecOo ,.-
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and E(t) is a function relating decay to depth of penetration into the foliage layer

E(g-'(t))

This general solution for the volume response can be modified to yield a simpler

result. Assuming that the velocity is constant in each layer of the medium, the solution

becomes more apparent. Here, we assume that medium 1 contains the leaves and

branches (group velocity is cvj) and medium 2 is the trunk region (group velocity cv2).

The starting point for the upwelling power density due to the volume return (along a

radial in the f direction) is then given by

1(-f; r, 0, d, t) =-xr(x)sec+d'sec8C b (-) t  (r ° + 4(x) sec 0) 2[a- (rio + 4(x) sec 0)]

- r 0+4(x)sece1 a~)Jlc

.exp{x~s~ ,2 e( t) dL } dot

After following the previous procedure, the average power as a function of time,

scattered from a volume with an irregular interface at the crown can be expressed in the

convolutional form

(P(t)) = PT (t) ® PFS (t) ® p(t) ® E(t)

where in this particular case,

2r' ct' 2
-= g(r') = r' = g-'(t') = - and g'(r) = - = constant

c 2 c

Hence, for a group velocity in the volume given by cv,

E(g-'(t)) _ E(cvt/2) _ cv ab exp{ - 2fcvtI2 '(')p ' }u(ct /2 2'
g'(g-(t)) 2/c v  2 0 V /

Note that the unit step function u(t) "turns on" when t = 0.
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3.1 Incoherent Scattered Power: the Rough Surface Return

We start with the expression for the power density attenuated by the foliage in its

downward passage, scattered from the surface, and then attenuated by the foliage in its

upward passage; this is the first term of equation (6) in Section 3.1. Note that the

geometry of Figure 3.1-1 still applies

I(-r;r=r,0,,t) = a,(0, )I cot- 25 -, exp{- 2 (g)d} (1)

Substituting for the power density using the following relationship

I(r,0, ,t) = PT(t) G(O, ') (2)47tr'

where I is the power density (sometimes called intensity), PT is the power waveform and

the f direction is specified by the angles 0 and . The average power returned from

within the illuminated region can be evaluated by integrating over a surface

encompassing the illuminated area. In this case, we choose to integrate over the area at

the top of the canopy (r = ri). Hence, substituting the power waveform for the incident

power density in equation (1) via the relationship in equation (2) and performing the

ensemble average over the random variables, the total average power at the crown is

(P(t)) = f at Ks(O,) G 4-Or2  P, " t-- 2J>3),Jexp{-2fr3ke(g)d4}dsurface at 47r2C O  C40)

r = rl0

(3)

where the surface scattering cross section per unit area, a'(0, 0), has been included. The

angles (0,0) are spherical coordinates centered at the antenna and can be related to the

variables of integration. Also in this expression, the antenna gain has a boresight angle

given by (0o , 0) and the angles (0a '1a) are spherical coordinates defined with respect

to this antenna boresight direction which may also be related to the variables of

integration.
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Although the solution procedure can proceed with a propagation speed, c(Y), and an

effective extinction coefficient, ke(f) that vary with position as assumed in (3), the

following results are simplified since they are based on a constant group velocity and

extinction coefficient in each layer.

* Free space, the group velocity is co

* Layer 1, the canopy region, the group velocity is Cvl, the effective extinction

coefficient is ko, r E (r,, r2)

" Layer 2 the trunk region, the group velocity is Cv2, the effective extinction coefficient

ise2, r e (r 2 ,r 3 )

Hence, the integrals with respect to the radial distance within the argument of the

transmitted power may be easily performed, yielding the average power at the radar

(P(t)) =

(0 (0(0 _G_2(0,I PT (t_ 2r 1 2(r 2-r ) 2(r3 -r 2))ex{2fi,(gt, dS
sffat K ( )) PT t(43 r4C0 C Cv2

r = r1o

The final results will be cast in a convolutional form for the average returned power.

After expanding the transmitted power waveform's delay time argument in terms of the

random variables and constant terms,

r, =r10 + (x)sec 0

r2 =r 0 + d, sec0 + 4(x) sec0

r3 =r 0 + (d, + d2 )secO + (x)secO

and performing the integrations with respect to the extinction coefficients, the average

return power as a function of time becomes

35



(Pi(t))= J (4) (O
Surface at (47c)' r4

r=ro

t2r10 sece 0 (x) secO0 2d1 secO 2d 2 secO 2[ (x)- (x)]secO
f. -T C0  - Cvi - C, 2  -cv 2

exp{- 2,,d sec0- 2ie2 (d2 + (x)- (x))secO }p( )p ( )dd rdrdo
(4)

where p ( ) and p,( ) are the probability density functions for the boundary heights of

the foliage volume and the rough surface, respectively. Rearranging and substituting for

the constant terms, equation (4) is rewritten

X2G 2t( a(O,O) exp-2secO( d ke2d 2 )}

swfaceat (4 )3r4

* PT t -- 24(x)secO 2 (x)secO J(5)
•exp{2ke 2 4(x)secO }p,()d exp{-2k 2,(x)secO }p,(4)d rdrdD

where k., k are the effective extinction coefficients in medium 1 and 2, respectively;

and

2r10 sec 0 2d1 sec 0 2d 2 sec 0
C0  Cv 1  Cv2

Ca Cv2

Performing a change of variables which transform distance into time

t, 2 (x)sec0 d = C dt
cV2 2secO

2 (x) see0 c
t2= sc d = dt 2

Ca 2sec0

and defining some new functions,
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ft,(tl) = exp{-ke2 c' 2 IIPtp(t 1 )

f12 (t 2 ) = exp{ ke2 Cat 2  t2)

Noting that the probability density functions describing the boundaries must also be

transformed,

___ ( C2t /

P(t)= 2secO' 2secO)

Ca Cat2
P(t2) -2 se 0 p  2secO)

we find that the average returned power can be expressed as

(P (t))= ff %2G 2 (Oa ,a) (a (0, o)exp{- 2se (kldi -k e 2d 2 )}
Surface at 4(47c)'r4

r=rio (6)
c4c v fP(t -to -t 1 -t 2 )fll(tl)dtl ft2 (t 2)dt 2 r1° dr°do

Performing the tj and the t2 integrations and expressing the result in convolutional form,

which is represented with the 0 symbol we find

(Pr ()) ff CaCv2 !G 2 (Oa I Oa). Co(0, b)exp{- 2 see0('ed, + 'eAd)}

Surface at 4sec ( 4 7y d
r = rio

*[PT (t - to) ft (t - to) f f2 (t - to)] r10 dr,0 do

Integrating over the foliage upper surface, the returned power can be recast into the

following convolutional form, following the methods outlined in previous section.

(Pr(t)) = PT(t) f (t) 0 ft(t) 0 PFs.(t) (7)

where f,, (t) and ft2 (t) are functions which depend on the probability density functions

whose random variables are functions of the random variables representing the surface

and canopy statistics, 4(x), (x) as well as the extinction coefficients, and the antenna

boresight angle, 0. The flat surface impulse response function (FSIR), PFs'(t), is similar to

the standard FSIR with the modifications (among others) that account for attenuation:
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PFS'(t) = (2f f (r')4  sec 0

(8)

exp{- 2 sec 0(k,,di + ke2d2)} r'dr'd

Here the antenna gain is approximated by a circularly symmetric pattern with a pointing

angle given by (00,40) and the angles (0a, a) are spherical coordinates defined with

respect to the antenna boresight direction. Consequently, the antenna gain can be

represented by

G(0a, a) = Go(0o, o)exp{- 2 sin2 0a} (9)

This expression (8) for the FSIR includes additional effective parameters related to the

speeds in the different media, the incidence angle, and consequently, time or range:

h'= C-d + 5c d2 +h
cl Cv2

2 (h,)
2 + p 2

The integral for the FSIR can be simplified using the method presented in Brown [1977];

we begin by substituting the two-way incremental ranging time for the actual time:
= t- 2r'c. Assuming that the beam is narrow such that the surface incremental cross
Tc

section is constant over the angular extent of interest and that secO =_ sec0O (boresight),

the FSIR is found in the following form

? 2 C0CaCv2 (h' )2 G02(0°' 00)ao0(00' 0°) ic 2"

PFS'(T) = 16cc c2 ( 2 0oo 2h,)eo p {( t (eldl + ke2d2)
167r 3(c0 c+2h')5  h' (~d

(10)

f exp - sin20a d#

Note this expression can include an asymmetrical antenna pattern [Newkirk and Brown,

1992].
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Summarizing, the final form of the solution to the average power returned due only

to the rough surface can be expressed in the following convolutional form,

(P (t) = PT (t) ftl (t1) ® ft2 (t2) (3 PFs,(t) (1

where ff (t,) and f12 (t2) are functions of time which depend on random variables which

are functions of the surface and canopy statistics, (x), 4(x), as well as the extinction

coefficients, and the pointing angle:

t, =2 (x) sec0 =:> ptl(tl )  = /
c v2  4 

C
'
2t

i
C'2 2secO ( 2secO)

2 2(x)secO = c. ( ct2
t2 =2(x) secO 0 =>Pt 2 (t 2 )= ca _4____

Ca 2secO p v 4 2secO)

ft(tj) = exp{-ke 2 Cv2t1 }Pt1(t1 )

f2 (t 2 ) = exp{ke2 Cat 2 } Pt2 (t2 )

The modified Flat Surface Impulse Response is given by

pFs,(t)-- X2 caCv 2  7z 8(t - 2r ) G2(03, a) (0,exc0 d +dpd4(4t) 3 o o (rc4  sec 2  exp(- 2 seco + d d

for layered media with a constant velocity in each media and where kei ke2 are the

effective extinction coefficients in medium 1 (foliage region) and medium 2 (trunk

region), respectively.
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4 Interaction between the Foliage and the Surface

The returned power from the volume must be modified by the addition of the time-

delayed return from the rough surface under the random media. As previously seen, the

radiative transfer method accounts for this second scattering event simply by assuming

that the incident wave to the rough surface is due to an attenuated version of the original,

free-space, time-delayed incident power waveform. The attenuation is due to the

collection of scatterers along each radial from the antenna. After the power waveform is

then scattered by the surface, it again travels back up through the foliage, suffering the

same attenuation. The details of this approach were developed in the Chapter 3. A sample

set of volume and surface scattered waveforms based on the radiative transfer results of

Chapter 3 is given in the first section of this chapter.

Since many assumptions are inherent in the radiative transfer result, there is a

question as to the validity of this approach. Can the interaction between the foliage and

surface be modeled simply by this single interaction? The foliage scatters a field, Es,

toward the antenna and other directions. This foliage scattered field, E', is also incident

on the rough surface in addition to the free space incident field Ein (see Figure 9). It is

then scattered back through the foliage (see Figure 10) resulting in a second scattered

field returned to the radar, Ese due to the foliage-surface-foliage interaction.

Es 

inc

E lCD

Js => u2 sN

Figure 9: The total incident field with respect to the surface
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nc

c <=> Js

Figure 10: the first order approximate scattered field from the foliage and surface
combination

Naturally, the question arises: are the multiple interactions between the foliage and

the surface a necessary component in this portion of the model? That is, is there a

significant second order surface interaction due to incidence of the field Eff , the foliage-

surface-foliage field, to the surface? In other words, when Ef is incident on the surface

(note the addition of Et5f into Figure 11 with respect to Figure 10) will there be a

significant correction to the surface scattered field? This additional incident field will

modify the surface currents, which will radiate, Ets, creating a new foliage scattered

field, Efsfsf . The third order approximation to the interaction between the foliage and the

surface would repeat this process again. This process will continue indefinitely, or until

the corrections become negligible. Notice that with each iteration, the final foliage

scattered field is not used as an incident field for the surface.
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E fS fs E fK Es

ss Efsf \ s -
fs fs E fS n

Figure 11: the second order approximate scattered field from the foliage and surface
combination

Hence, extensions of this single passage event would include an infinite series of

interactions between the foliage and the surface in the case of single scattering theory or

full) coupled integral equations in the integral equation approach. Is the first order

scattering interaction term adequate? Three methods of approximation to the second term

have been or will be examined in this study:

1. Modified "First Order Multiple Scattering" theory

2. Exact formulation using the Method of Moments (MOM)

3. Reduced integral equation approach

Due to the complexity of the second approach listed only a limited number of

scatterers can be placed above the surface. Hence, we will investigate the higher order

interactions based on a single scatterer above a rough surface. Since the radiative transfer

approach cannot simulate this situation, another approach was required. After some

investigation the first listed approach was found to not only support the single scatterer
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investigation, but also turned out to be a more general version of the radiative transfer

result as developed in Chapter 3. This first order multiple scattering approach, under

certain assumptions reduces to the result given for the radiative transfer approach. This is

detailed in Appendix A.

The first approach, the modified first order multiple scattering result, does begin with

a single scatterer. Hence, since the convolutional, radiative transfer approach is related to

this method, we need only show that the foliage to surface to foliage interaction requires

only the first order interaction, i.e. truncate the infinite series of interactions as previously

described with only the first interaction to verify the assumption. A proposed method for

extending this approach to a collection of discrete scatterers is also outlined. In addition,

if this method were successfully implemented as a convolution, it would serve as a more

general approach than the radiative transfer method as developed in the first section of

this chapter.

Verification of the first order multiple scattering result will require a comparison with

an exact solution. Consequently, the next section of this chapter examines the exact

formulation for a single scatterer above a rough surface and solution via the efficient

MOMI method as previously described. This result may serve as an exact result when

compared with the first order multiple scattering solution obtained for a single scatterer

above a rough surface.

Finally, in the following section, the exact integral equation method is simplified

using some reasonable assumptions. This method will result in a more accurate method to

simulate interaction between a single scatterer above a rough surface than the first order

multiple scattering approach. In addition, it may also yield a more tractable numerical

model when it is extended to a collection of scatterers above a rough surface than the full

Method of Moments approach. This more accurate representation of the interaction may

be required at some level of simulation.
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4.1 Capabilities, Limitations and an Example Return Waveform

for the Radiative Transfer Approach

Previously noted limitations of the radiative transfer result have included a limited

scattering pattern for each volume scatterer and a narrow beamwidth approximation. The

chosen scattering pattern demands strictly forward scattering and backward scattering.

This assumptions decreases the number of coupled differential equations from N (when N

scattering directions are used in a quadrature approximation to the integral in the

radiative transfer equation) down to two: coupled integral equations, one governing

forward and one reverse scattering. Secondly, the upwelling power density is assumed

not to influence the downwelling. This last assumption is key since it allows a closed

form solution for the downwelling power density. Otherwise, the solution would be in the

form of two coupled differential equations.

In Appendix A, the radiative transfer result is shown to be equivalent to the first order

multiple scattering result. From the first order multiple scattering analysis of Appendix

A, another limitation of the radiative transfer approach has been identified: use of a

narrow bandwidth approximation. This assumption is expected due to the use of a

constant backscatter coefficient with respect to frequency. However, using the full, two-

frequency mutual coherence function, it may be possible that the impulse response

approach can be extended to broader bandwidth pulses in addition to broader beamwidth

antenna patterns. This premise is still under investigation.

As a simple example, a simulation for a layered media with a constant propagation

speed and constant extinction coefficient in each layer was performed. The results are

shown in the following figures. The assumed parameters of the radar system are as

follows:

" Waveform: Square Pulse with 5 ns pulse length

* Antenna: Gaussian pattern, 1 to 10 degree beamwidth

• 100,000m range to the surface at nadir pointing
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The media is assumed to have the following bulk propagation properties (arbitrary

estimates since no data was available) and Gaussian statistics:

1. The foliage layer

* 20 meter thickness

* effective extinction coefficient as noted

* group velocity as noted

* variance of the heights: 0.1 m2

* backscatter to forward scatter cross-section, af/ab : 500

* absorption to total scattering cross-section, aa/Ut: 0.9

2. The trunk layer

* 5 meter thickness

* effective extinction coefficient as noted

* group velocity as noted

* backscatter to forward scatter cross-section, af /ab : 500

* absorption to total scattering cross-section, qa /,at: 0.9

3. The ground layer

* Perfect electric conductor (PEC)

* variance of the heights: 0.1 m2

Figure 12 shows the simulated returned waveform for three different antenna

beamwidths: 1, 5, and 10 degrees. As an aide to the understanding of these waveforms,

the components of the composite wave for the one-degree case are shown in Figure 13;

here, the composite waveform is the simple superposition of the volume and surface

scattered waveforms. As you can see from Figure 13 for the one-degree beamwidth, the

surface return begins after the volume return has decreased; hence in the composite

waveform, the surface and volume return are still somewhat separable. The early return

of the composite waveform is due to the volume response and its tail is attributable to the

surface return. However, from Figure 12, for the five-degree beamwidth case, this

distinction is less noticeable, whereas for the ten-degree beamwidth case, the surface and

volume returns become indistinguishable.
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Similarly, in Figure 14 and Figure 15, we see waveforms that are derived using the

same parameters with the exception of propagation speed in the foliage and trunk

regions: these have been reversed. In this case, since the electromagnetic depth of the

media, commonly referred to as the optical depth, is much shorter, the surface and

volume returns are easily separable. Again, Figure 15 explicitly shows the components of

the composite waveform for a one-degree antenna beamwidth.
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Normalized Waveform
(Beamwidth Variation)

1 .20E+00

Pointing Angle: 0 degrees

1.008+00 Pulse: 5 ns
Vegetation layer: 20 m depth, 0.10 np/rn. 0.1 rn/ns, fwd:back =500:1

8.O -1Trunk 
layer. 5 m depth, 0.01 np/n, 0.3 m ns, fwd:back 500:1

Beamwidth

-1 deg
.~6.008-01 -5 deg

-10 deg

4.008-01

2.OOE-01

0.OOE+00
0.008+00 2.008-07 4.008-07 6.008-07 8.008-07 1.00E-06 1.20E-06 1 .40E-06

time (s)

Figure 12: Composite waveform for 1, 5 and 10 degree antenna beamwidths

Pulse Return Waveform
One Degree Components

1.20.

1.00-

-composite:

S0.60 -terain
Pointing Angle: 0 degrees -volume

8 Pulse: 5 ns
0 Vegetation layer: 20 m depth, 0.10 np/rn, 0.1 rn/ns, fwd:back =500:1
Z 0.40 Trunk layer 5Sm depth, 0.01 np/rn, 0.3 mlns, fwd:back =500:1

0.20

0.00
0.OOE.00 5.008-08 1.00E-07 1.50E-07 2.008-07 2.50E-07 3.008-07

time (s)

Figure 13: Components of the 1-degree case: Volume + Surface Returns
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Normalized Waveform
(Beamwidth Variation)

1 .20E+00

Pointing Angle: 0 degrees

1.00E+00 -Pulse: 5 ns
Vegetation layer: 20 m depth, 0.10 np/rn. 0.3 mlns, fwd:back =500:1

Trunk layer 5 m depth. 0.01 np/rn. 0.1 m/ns, fwd:back =500:1

8.00E-01

Beamwidtth

S6.002-01 - -deg
N- -5deg

- 10 degI

Z4.002-01

2.002-01-

0.002+00
0.002+00 2.002-07 4.002-07 6.OOE-07 8,002-07 1.00E-06 1.202-06 1.40E-06
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Figure 14: Composite waveform for 1, 5 and 10 degree antenna beamwidths

Normalized Waveform
One Degree Beamwidth Components

1.20

Pointing Angle: 0 degrees
Pulse: 5 ns
Vegetation layer: 20 m depth, 0.10 np/rn. 0.3 mlns, twd:back = 500:1

1.00 Trunk layer S m depth, 0.01 np/rn. 0.1 rnlns. fwd:bed = 500:1
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0.002+00 2.002-08 4.00E-08 6.OE-OB 8.00E-08 1.002-07 1.20E-07 1.40E-07 1.60E-07 1.80E-07

time (s)

Figure 15: Components of the 1-degree case: Volume + Surface Returns
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4.2 Modified Single Scatter Theory for a Single Scatterer over a

Rough Surface

4.2.1 Introduction

As previously discussed the radiative transfer approach has simulated the foliage-

surface-foliage scattering event with only a first order interaction in addition to some

limiting assumptions. The review of the first order multiple scattering theory in Appendix

A has shown not only the equivalence of this method to the radiative transfer method

when the same assumptions are employed, but also a way to generalize these results to

broader bandwidth, broader beam systems and less restrictive scattering functions.

Consequently, in this section we hope to explore the extension of first order multiple

scattering to foliage over a rough terrain. This extension will not only help remove some

of the restrictions, but also provide a method to examine the validity of the first order

interaction with the surface. This comparison is possible due to two reasons. First, using

the first order multiple scattering results, we can produce results with multiple

interactions between the foliage and the surface. Second, for a single scatterer over a

rough surface, we can directly compare these results with exact numerical results as

presented in the following section. The work in this section is still under development.

Appendix A has presented the first order multiple scattering result for scattering from

a volume. This is based on single scatter theory and is equivalent to the radiative transfer

approach previously outlined. A second important scattering event, in addition to the

backscatter due to the volume alone, is the return from the surface. There are three

possible mechanisms that may be responsible for this process, see Figure 16

1. Direct return from the surface in which no interaction with the volume scatterers

has occurred.

2. A scattering event involving first a member of the volume of scatterers and then

interaction with the surface

3. A scattering event involving first scattering from the surface and then interaction

with a member of the volume of scatterers.
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The first case corresponds to free space scattering by a rough surface that was discussed

in Appendix A, or the radiative transfer result discussed in Chapter 3. The second and

third cases have not been discussed. However, since the first case has already been

discussed and the second and third cases are equivalent by reciprocity, we need only

examine the second case: the scatter from the vegetation to the surface and back to the

radar. If the scattering mechanism for foliage-to-surface-to-foliage is considered

significant, this will be a simple extension of the results that follow.

Figure 16: Particle and Surface Scattering Events
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4.2.2 Development of the Model

Given the scattering pattern of the scatterer and the two-frequency mutual coherence

function of the scatterer, the power density scattered toward the surface can be quantified

as follows, see Appendix A [Ishimaru, 1997]:

I(t;JsJJs ) = f A Ol,t~j ewtdo][ A 0)2 ,t- TeJ2tdo 2 ] pdV (1)
volume of [-o -0C

scatterers

where r, is the distance from the antenna to the scatterer and the product of the transfer

function and the complex envelope, Ui(o), of the incident waveform is given by

-~ 
- jk rs  st

A(t,co.) = ri(-oo)F(coo;f's,ki)g(co;k)'exp - rp(CtdR) (2)
rs

and the unit vectors, = (0,0,), ii = (Oi, 4i), represent the incident and scattered

directions with respect to the scatterer, respectively. The function g(co, k1 ) is related to

the antenna pattern; F(co; k,i)is the Fourier Transform of the scattering function

f(kjk), and Ui(o)n) of the complex envelope of the incident pulse at a given

frequency. See Appendix A for additional, more detailed definitions.

The expression (1) describes the pulse shape, amplitude and the scattering pattern of

the scattered power waveform due to a volume of scatterers, each at a variable distance rs

from the antenna. The observation location is on the terrain at a distance rg from each

scatterer. See Figure 17. If the narrow band approximation can be used, this expression

can be simplified to

I(t;Os' = b(kk.) It--i
volumneof (471)'r~ T C 3
scatererr (3)

exp {- Sp(ot )dR }exp I- f p(at)dR } pdV
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where abi (k, ki) is the bistatic scattering cross section of the scatterer assuming a

scattered waveform in the ks direction and given an incident field in the k1 direction at a

range rg with respect to the scatterer's local coordinates. Note that this bistatic cross

section can be used due to the narrow band assumption that results in a particularly

simple form for the two-frequency mutual coherence function. In general, this term is the

integration of the product of the two-frequency mutual coherence function, the antenna

gain as a function of frequency and the complex amplitude with its complex conjugate

over all frequencies, see equation (2) and Appendix A.

r00

// g hs

--. _" 2 ---- --- ---- --- -- - - - -- -- - -- ----- - -- -
0 (XoYo)

Figure 17: Geometry for Foliage-Surface-Foliage Scattering Event

Now we shall consider the scattered power density from a single scatterer over a

rough surface. Using the geometry found in Figure 17, we can derive the first order

multiple scattering result for this scatterer. In either case broadband or narrowband, the

scattered power waveform created by the scatterer due to its incident field from the

antenna can be thought of as a secondary source with respect to the surface and the

original source, the antenna. Now the surface has two incident power waveforms: the free
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space power waveform due to the antenna and the power waveform created by the

scatterer. The scattered waveform from the scatterer, is described by expressions (1) and

(3). Considering the power waveform scattered by the scatterer as a second source,

I(t; Os, 4s ) represents the product of the transmitted power waveform due to the scatterer,

PT,s(t), as modified by an assumed "antenna pattern" for the scatterer, G (0s, Os) . First

we will re-express equations (1) and (3) for the specific case of a single scatterer.

Oi
Oa

Figure 18: the geometry of the scatterer

If we consider a single scatterer under the narrow band approximation, the

expression for the power density incident on the scatterer is found under the first order

multiple scattering theory to be

I(t;oa,4a) = Ga(oar ) eXPjske()dg.T t )
here, PT(t) is the radar's transmitted waveform that has been attenuated by the

exponential factor and weighted by the radar's antenna gain Ga (Oa, a) in the direction

of the scatterer, (Oa, a). These angles describe the angle of the scatterer with respect to

the antenna in the antenna's reference frame and r, is the distance from the antenna to the

scatterer. Employing the bistatic radar cross-section, abi (l, ki), the waveform scattered
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in the ks or (Os,os) direction given an incident field in the k1i direction with respect to

the scatterer's local coordinates can be written as

I(t;=0S) Ga(0.a) exp{- sike(L)d }Pt- ab ) (
rV ,([td~iI P. t LS(4)

The "scattering pattern" of the scatterer in the direction from the scatterer to the terrain,

(0g, 4d, is the analogous normalized antenna pattern of the new source with a normalized

antenna pattern given by

GS(Og,)g -bikxi (5)
abi

and the analogous transmitted power density from the scatterer is given by

PTS(t) = Ga(0a'4-a) exp{-JrSk()d }b (6)

47trS i

Note that the product of (5) and (6) is equal to (4). Recall that the angles using subscript

"a" refer to the angle between the antenna and the scatterer in the antenna's local

coordinate system and rs, refers to the slant range from the antenna to the scatterer; see

Figure 17. In the general broadband case, these quantities are not so easily separated

since they remain buried in the inverse transforms. This matter requires further

investigation.

Next, we consider the foliage-surface scattered power collected by the radar. From

the discussions involving the flat surface impulse response, the solution for the average

incoherent response of a scatterer over a rough surface can be developed. We begin with

an expression for the returned power waveform which is similar to that given in Chapter

2 describing the impulse response method for a rough surface in free space,

_Tt_2_r - (x, y) sec0)~

PR(t) = (4n)3 0 0 (r0 - (x, y) sec)- ,)a°(0,)pd~dp
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In this case, the transmitter and receiver are at the same location and have the same

antenna pattern; the slant range from antenna to surface is simply traversed twice. When

the scatterer acts as a source, however, and the radar antenna collects energy, the

expression must change to reflect

1. the different distances: from the scatterer to the surface element, rg - (x, y) sec 0,

and from the radar antenna to the surface element, r0 - 4(x, y) sec 0 ; these range

variations affect the delay time as well.

2. the different "antenna patterns": from the scatterer, Gs (0s, 4f) with respect to the

surface and from the radar antenna, Ga (0, 0), with respect to the surface, each in

its own coordinate system.

3. The bistatic radar cross section per unit area with an incident angle, ii or

(0i, Oi) and scattered angle k5 or (0s, 0s) with respect to the antenna's coordinate

system, see Figure 18.

Hence, the expression for the incoherent power returned from the surface as a function of

time due to the scattered energy in the foliage-surface interaction can be written as

PT' t - (rg-4(xy)secO,) (ro-4(x~y)secO)
PR (t) f f4c----7!

(rg - 4(x, y) sec O )2 (ro - (x, y) sec O)2

(7)

•Gs(O.,4 5)Ga (O, ) 'o(OsIs;O, ) pdodp

note that the incident power waveform is that from the scatterer, PT,S defined by equation

(6). Simplifying this result under the assumption that the surface height is negligible in

the amplitude terms, and recognizing the equivalence of the radar coordinates and the

polar coordinates defined on the surface, we find
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,, c 2t T' _____ 4 xy) sec Os +sec 0)

PR (t) " f4 f 3  
ro2rg2

(471) r0 r

•Gs(0,,los)G.(0, 0))a0(Os, o,;0, ) ro dro do

The integration over the surface is performed in the antenna coordinates. Assuming

the angles above can be measured from the mean plane, a relationship between the
"scatterer-to-ground" angles, subscripted "s", and the "antenna-to-ground" angles, not

subscripted, can be found with respect to the antenna frame of reference in the following

symbolic manner. Let

0 = fs(O)= tan-'{(x xO)2 
+ (Y 

gYO)2

, = gs(o) =+tan-(x -xo

In addition the slant range from the scatterer to the terrain can be found in terms of the

antenna coordinates. Given that the scatterer is located at the coordinates (xo, yo, h,), the

distance from the scatterer to the surface is expressed as follows, see Figure 17

rg = (XX.)2 +(y-yo) 2 + hS2

with (x, y)= ( r sin 0 cos , ro sin 0 sin)

Hence, establishing a reference frame on the antenna, we express all angles relative to the

spherical coordinates centered at the antenna. Consequently, expressed entirely in the

antenna's frame of reference, the power return waveform becomes

PRt X PT'S t (rg+r) (x,y)( sec(f,(O))+sec0)1

PR (43) oco (ro)2(r )2

(8)

-Gs (f,(0), f( ))G (0, (f (0), g (0, 0, ) "o do dro
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where each angle and distance is now measured in terms of the antenna/radar coordinates.

Averaging these results by the surface heights, 4, the average incoherent power returned

becomes

__ _ PT'S t -(rg + r) 
+  (x, y)( sec(f. (0)) + sec 0)

(PR(t)2 = J 2 c- r 2 2 C0 P()00 rgr o

(9)

Gs(f. (0), fs(4))Ga (O, )u0 (f, (0), gs (0); 0, 0) ro do dro d

where the probability density function (pdf) for the surface heights has been given by

p(). With a change of variables for the heights given by

(x, y) = 4(x, y)( sec(f(0))+ sec 0)
co

and the corresponding transformation of the pdf given by

(P ) co )pK co 0)

(sec(fs (0))+ sec e) sec(f(0)) + sec 0)

the average returned power can be re-written as

KPR () - f f 2 2

(4 0 o (sec(ft,(0))+sec0)f, rg ro

-Gs (fr,(0), fs (0))G. (0, 0) (°(f, (0), gs (0); 0, ) ro do dro

the returned average incoherent power can be expressed in a convolutional form, with the

symbol 0 denoting convolution.
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__ _ P st- (rg9 + ro ) ® ( +r ) _ _ _ _ _ _ _ _
Co f

o  ,] CO
- (471)3 0 C rgr. (sec(f,(0))+sec0)

(10)
• Gs(f.,(O), g.,())G. (O,0)(Y°(fs(O),gj(,O0, 0) ro do dro

Taking advantage of the properties of the delta function,

(PR(0) c 2c PTs (t-t')®p (t-t') 8 ( (rg +r)) coo ( o 0rr co  ) (sec(f,(0))+sec0)

(11)

•Gs(f.(0), fs(0))G. (O, O)a°(fs(O), g (0); 0,) ro do dro dt'

Next, we invoke the narrow beam approximation for the dependence of the argument for

the pdf and we approximate 0 with the boresight angle, 00.

( )ct

sec(fs(0o ))+sec0o  (sec(f(o))+sec o

Finally, the expression for the average power returned from the scattering event: antenna-

to-scatterer-to-ground-to-antenna, can be represented by the convolutional product

(PR (0))_ PT,s(t ) 0P (t) PFs,s (t) (12)

where

2 2Co Co

PFs's(t) (47r)3 o o (fr(ro)) 2(ro) 2  (sec(fs(0))+sec0)

• Gs(f.(0), g,(0))G. (0, 0)a°(f,(0), g(440, ) ro dodro

Note that the height of the single scatterer, hs, and its orientation, K, can be made random

variables as well; this formulation has yet to be investigated. The random orientation of
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the scatterer will require that the boresight angle of Gs, the scatterer's "gain pattern," be a

random variable. A scatterer with a random height will result in the distance rg and the

associated angles to become random variables. The final average return power from the

surface due to a single scatterer will then require that we average only the modified flat

surface impulse response, PFs,s(t). Hence the averaged incoherent power returned will be

of the form

(PR(t)) PT,S(t )®p (t )®(PFSS(t)) (13)

where

o oS, (fr (r.)#2 (ro )2

/hs

•(Gs(f,(0),g.(O)))) 0G(0,O)ro dodro

where h, = a random height for scatterer N

K2 = a random orientation for scatterer N

and (*), is interpreted as ensemble averaging with respect to the random variable ca

Now the return from the surface and the scatterer combination is a superposition of

the return from the volume and that from the surface. Consequently, the incoherent

response from N, randomly oriented, scatterers at random heights can be expressed as

N

(P(t))= PTS(t )® p (t )®PFS(t) + NPTS(t )® p (t )® (PFS'S(t)) (14)

The first term is the incoherent power received directly from the scatterers as described in

the radiative transfer section or the first order multiple scattering description. The second

term is the response for N, randomly oriented scatterers at random heights above a
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random surface. A third term may be added, if it is expected that there will be significant

return directly from the surface without interaction from the scatterers.

4.2.3 Conclusions and Future Efforts

In this section, an outline for predicting the average incoherent power returned from a

single scatterer and N randomly oriented scatterers at a random height above a rough

surface has been presented. Implemented, this model will accomplish the following with

respect to the radiative transfer model.

1. When N scatterers are used, the radiative transfer results should be duplicated if a

single interaction is considered along with the narrow beam, narrow bandwidth and

restricted scattering pattern assumptions as detailed in Chapter 3, the radiative

transfer approach.

2. The above restrictions may be relaxed in the first order multiple scattering approach

in order to judge their effect; thus supporting or further generalizing the radiative

transfer result of Chapter 3.

0 The scattering pattern may be chosen more realistically

0 The beamwidth of the illuminating antenna and the bandwidth of the signal may be

increased (with the possible sacrifice of the convolutional form)

e Including the higher order interactions between the foliage and the surface may check

the single passage assumptions.

* If the radiative transfer results prove to be too restrictive through the implementation

of these generalizations, this model will serve as the next possible approach.

3. Simulation of a single scatterer above a rough surface may be checked via exact

numerical calculations as outlined in the next section of this chapter, thus checking

the first order multiple scattering approach (with higher order interactions between

the surface and the scatterer) and ultimately the radiative transfer model.
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The implementation of a single scatterer placed deterministically above a rough

surface must be accomplished first. These results will be compared with the exact results

as discussed in the next section. The formal implementation of a randomly oriented and

randomly positioned particle must then be formulated. Averaging the new Flat Surface

Impulse Response will be attempted. Once this accomplished, we extend this technique

to N scatterers as discusses in the previous section. Using the Foldy-Lax-Twersky

integral equation, we can establish the effective media for the first order multiple

scattering results and obtain a result that is similar to the Distorted Wave Born

Approximation (DWBA); consequently, these results may be compared with those

obtained by Lang [ 1981 ]. Finally, the broadband approach must be fully explored. The
challenges in this extension include keeping our results in the fully convolutional form

obtained for the narrowband case. Most likely, we will choose a scattering function that is

simple and practical such as that presented by Schwering [1985]
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4.3 Exact Solution to the Single Scatterer above a Rough Surface

The impulse response model, like most radiative transfer models, does not account for

any interaction between the scatterers (foliage) and the boundary (surface). In

establishing a range of validity for this assumption, a measure and threshold of "no

interaction" must be established. Once this measure is established, numerous simulations

of the exact scattered field must be examined in order to verify this assumption over a

large parameter space including

o the scatterer's size normalized to wavelength

o the scatterer's separation from the rough surface normalized to wavelength

o the scatterer's orientation (if it is not circular)

Consequently, we must assess the magnitude of the contribution of multiple scattering

interactions between the scatterer and the rough surface. One approach to establishing the

measure of significant interaction would be to include each level of multiple scattering

and measure its contribution to the exact solution. Hence, we begin with the assumption

that the surface and the scatterer do not interact. Next, we assess the correction for a

single scatter interaction.

* In order to verify this assumption of independent scattering, an "exact" numerical

model has been created using the method of moments (MOM); the numerical solution for

the currents on the scatterer and the rough surface accounts for all orders of interactions.

After the problem is cast into the proper integral equation, the geometry is discretized in

preparation for a solution via the familiar Method of Moments (MOM). Specifically, the

Method of Ordered Multiple Interactions (MOMI) has been modified and is implemented

as a solution method. This will be described in Section 14.34.3.1. Once the currents are

found from the integral equation, the scattered fields can be simply found using the

proper radiation integral; the far-field formulation has been used. A brief description of

the MOMI as originally applied to rough surfaces can be found in Chapter 2.
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4.3.1 Extension of the MOMI to Closed Bodies

The MOMI method, as discussed in Chapter 2, is a solution method for the MOM

derived matrix equation of the following form:

= t1flC + Pi (1)

where P is a propagator matrix, y is an unknown scalar field and y" is the known

incident field. In developing MOMI to analyze scattering from extended rough surfaces,

the self-interaction terms Pii were neglected [Kapp and Brown, 1996]. The propagator

matrix (P) was thus decomposed into lower triangular (L) and upper triangular (U)

matrices, each having zero entries along the diagonal,

P -4 L+U (2)

After a few simple manipulations, this decomposition led to the MOMI matrix equation

given in Chapter 2. However, consistent discretization of (1) requires that the diagonal

elements Pii be retained [Toporkov, 1998]. This modification can be incorporated in

several ways. In applying MOMI to integral equations having singular kernels, it has

been found that optimal convergence properties are obtained by decomposing the

propagator matrix as

P - L+D5+U (3)

where ) is a diagonal matrix with D = Pii. Physically, maintaining the self interaction

terms in D separate from (L) and (U) provides better convergence properties when

applying the method to integral equations having singular kernels because these

equations exhibit strong coupling between oppositely directed fields on the surface of a

scatterer [Adams and Brown, 1997].

The decomposition (3) leads to the matrix equation

y=(D-U)-'D(D-L)-  nc + PMy (4)

where D = I - D and the MOMI propagator, PM, is defined as

Pm = (D-U)-' D(D- L)-'LD-'U (5)
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Neumann iteration of (4) yields the candidate solution

IV = PMn(D- U)- 1D(D - L)-'c (6)
n=0

which is the same as equation (28) of [Kapp and Brown, 1996] under the substitution

D -+ I. Since D = I + O(Ax), the convergence properties of (6) are essentially unchanged

from those of equation (28) of [Kapp and Brown, 1996]. When convergence occurs, the

candidate solution (6) converges to the exact solution of (1). As discussed below, even in

cases for which the infinite series does not converge, the first few terms of (6) can still

provide a good approximation to the actual solution.

The MOMI series (6) provides a very robust and rapidly convergent solution to the

MFIE for scattering from extended rough surfaces in two dimensions. The series has

never been observed to diverge. These desirable properties have been attributed to the

manner in which the MOMI series re-sums the multiple scattering terms present in the

Neumann series for the original integral equation (1). The Born term in the MOMI series,

(D - U) - D(D - L)-'W n,, includes the contributions to the current due to all orders of

continuous forward scattering (D - L)- ', all orders of backscattering, (D - U) - ', and one

order of interaction between the backward and forward traveling waves on the surface

(resulting from the multiplication of these operators). Thus, the Born term includes

interactions of up to order N. The largest effect neglected by the order zero iterate of the

MOMI series is that of a wave which twice changes directions on the rough surface

before again interacting with the currents on the surface - a triple scattering event.

For this reason, the ordering of the unknowns in the original matrix equation (1)

can have a drastic effect on the convergence of the MOMI series. This is in contrast to

the Neumann series for (1) whose convergence properties are independent of the manner

in which the unknowns are ordered in the matrix equation. A different ordering of

unknowns in the MOMI series will result in the summation of different multiple

scattering terms. In the case of a random ordering of the unknowns in the original matrix

equation (1) for the rough surface scattering problem, the number of MOMI iterations

required to converge to a given error tolerance can be orders of magnitude larger than in
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the case of the physically based forward-backward ordering. It is not immediately clear

how the unknowns in (1) should be ordered for the application of MOMI to closed body

scattering problems. In the case of elliptical cylinders, at least two ordering schemes

incorporate important physical aspects of the scattering problem. These methods of

ordering the unknowns in the matrix equation are illustrated in Figure 19. An ordering

which is sequential-in-k (SIP) produces an iterative series that mimics the progression of

creeping waves around the surface of the cylinder. An alternative approach is one that is

sequential-in-x (SIX). This ordering results in a MOMI series for the closed body

problem which is somewhat analogous to the forward-backward approach used in [Kapp

and Brown, 1996].

SIP Ordering SIX Ordering

Figure 19 :Ordering of the Unknowns
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4.3.2 A Combined Field Formulation

Given this understanding, we next consider a formulation of the scattering problem

that does not give rise to a singular or nearly singular integral equation. In the following

we consider a combined field integral equation (CFIE) representation [Mautz, 1978]. The

CFIE is a linear combination of the MFIE and the EFIE as indicated below.

oEFIE + MFIE = CFIE,

While the CFJE can be used to provide a unique solution to the scattering problem,

the use of MOMI as formulated with a combined field description of the scattering

problem introduces additional difficulties associated with the kernels of the EFIEs. The

EFIE kernel for the TE problem is simply the Green's function of the Helmholtz equation.

For TM scattering the kernel function is the second normal derivative of the Green's

function. In applying the MOMI series to scattering from dielectric surfaces it has been

found that the singularities of these kernel functions produce strong coupling between

oppositely directed fields [Adams and Brown, 1997]. The singularity present in the EFIE

for TM scattering is particularly strong and requires that a modified form of (4.3.1-6) be

used. The singularity of the EFIE kernel for TE scattering is much weaker and is

therefore more amenable to the MOMI series solution technique. For this reason, in the

following we investigate the application of MOMI to the CFIE for TE scattering only.

4.3.3 Selecting an optimal CFIE: A multiple scattering approach

The electric field integral equation (EFIE) for TE scattering from a PEC object is

0=Eic-!I j GdS0  (1)

The CFIE for the TE case is obtained by adding this to the MFIE for this problem using

the complex constant ox. This leads to

aE aE'nc  5E'n

-=2x E i" + 2 -n 2ff K(dSo (2)

N an S o
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where

KaLI c G-j (3)

Discretization of this equation is discussed in [Adams and Brown, 1998b]. The resulting

matrix equation can be put in the form of (4.3.1-1). The corresponding MOMI series is of

the same form as (4.3.1-6).

The CFIE (2) is guaranteed to have a unique solution whenever cc is complex. This

requirement provides significant freedom in the choice of a. We further constrain cx by

requiring that it provide optimal convergence properties for an arbitrary incident field.

This corresponds to the value of cc which minimizes the maximum modulus eigenvalue of

PM.

A physically intuitive way of determining this optimal choice is to minimize the

contributions to the total field in (2) which are due to the integral term. Observe that if c

is chosen such that K - 0 then no iteration is required to obtain the exact solution to the

scattering problem. This is physically interpreted as the case of zero multiple scattering,

an example of which occurs in the MFIE (cu = 0) formulation of scattering from an

infinite PEC planar surface. In this case

aG- 0
an

and the integral term in (2) provides no contribution to the total surface current. This

results for the flat surface scattering problem because the magnetic field radiated to an

observation point on the surface by sources which are also on the surface has no

tangential component. Thus, the MFIE for which MOMI was originally developed can be

seen as the specialization of (2) to the rough surface case where cx is selected such that K,

- 0 in the unperturbed geometry of the rough surface scattering problem.

If possible, the optimal choice for cx would in general be

1 8G
1 =x 

(4)
G67
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as this would give K - 0 in all cases. Because this choice is not generally possible, we

instead consider asymptotically determined estimates of cc. In addition to providing

optimal integral formulations, these asymptotic estimates provide information on how the

optimal value of cc depends on the size and shape of the scatterer. To simplify the

following analysis, we consider only the case of circular cylinders.

For small cylinder radii (ka << 1) the normal derivative of the electric field on the

surface is approximately constant. Thus

faE Ka dS -aE f K, dS° (5)
S S

and the contribution of the integral term to the total field in (2) is minimized by choosing

a = (6)
(G)

where (*) denotes an average of the source point over the surface of the cylinder. Using

the small argument forms of the zero and first order Hankel functions

where y = 0.5772156649, the Euler-Masheroni Constant

(I2) (z) j2

7EZ

substituting above gives

a 7 (17-- ln(kalsin(- 20 (7)

-1[j7r+21n(ka)-ln2+y]-'
a

which is seen to be inversely related to the size of the cylinder.
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For large cylinder radii (ka >>1) the approximation (5) is not valid. Instead we

attempt to minimize the contribution of the integral term appearing in (2) by choosing for

cc the average of (6), i.e.,

a (aGlon)

Substituting the large argument forms of the zero and first order Hankel functions

H (2) (- 2 e-j(z- "c/4)

H02  (z) - e
irz
2 -j(z-3,x/4)

the simplified a becomes'

a - jk sin( -)) j2 k = j4 (8)

Unlike the small ka limit for which the optimal choice of a was found to vary with a, the

value of a suggested by (8) is independent of the cylinder's size.

The physical significance of the value of c given by (8) is understood by observing

that, on the surface of the cylinder in the TE problem

aE^
an y = jotfL x H = jco4H .

Multiplying this equation through by a-1 and inserting the asymptotic value of a given by

(8) prior to averaging, we have

Although the averaging performed in (7) has been performed over all 4o, the contributions to the average

from points near the observation point (for which the large argument approximations of the Hankel

functions are not valid) are of order ka"' when ka is large and do not significantly affect the result for a.
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1 E jw H tan

a on -Jk-sin([0 - 00o]/2) 1'

where

isin(O_ /o]2)[

and ri is the free space impedance. Recalling that a plane wave propagating in the

direction satisfies the relation

7jkxll = -E

we see that the choice of a specified by (8) results from the fact that the field at an

observation point excited by a distant source point is locally planar. I sin([4)- 00 1/2 )1 in

the denominator of i (which is not present above) arises because the CFIE imposes a

boundary condition on the tangential components of the total field. For TE incidence, the

electric field is always tangential to the cylinder while the component of the magnetic

field tangent to the cylinder varies with the location of the source point.

The optimality of the asymptotic estimates for cc provided by (7) and (8) can be

evaluated by calculating the eigenvalues of the resulting propagator matrices PM. Figure

20 and Figure 21 show the magnitude of the largest eigenvalue of the MOMI propagator

PM (in dB) for the TE CFJE as a function of the complex constant a for various cylinder

radii.
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FN

Figure 20: Contours of the largest eigenvalue of PM (in dB) as a function of the complex

constant a for circular cylinders

As anticipated by the above asymptotic analysis, for small radii the choice of a which

yields the minimum maximum eigenvalue of PM varies significantly with the radius of

the cylinder. The estimate of c provided by (7) is good through a = 0.05X. For the larger

radii cases of a = 1X and a = 5, the value of a which yields the minimum maximum

eigenvalue remains fairly constant at a ; j4/X, which is in good agreement with the

asymptotic value provided by (8).
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Figure 21: Contours of largest eigenvalue of PM (in dB) as a function of the complex

constant a for circular cylinders

From these figures we also notice that the minimum value of the maximum

eigenvalue of PM as a function of a increases as the cylinder radius increases from O.O1X

to 5k. This occurs because for large cylinder radii we are able to minimize the integral

term's contribution to (2) only by minimizing K, in an average sense. In the small radii

limit the approximation in (5) allowed us to determine the value of a by minimizing the

contribution from the integral term itself.

Figure 22 and Figure 23 show the magnitude of the largest eigenvalue of PM for TE

scattering from elliptical cylinders having axial ratios of a/b = 8. For small radii we see

that the optimal choice of a changes significantly with the size of the ellipse. The

smallest maximum eigenvalue of PM is larger for small elliptical cylinders than for small
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circular cylinders due to the breakdown of approximation (5) as the axial ratio, a/b,

increases.

Figure 22: Contours of largest eigenvalues of PM (in dB) as a function of the complex

constant a for elliptical cylinders having a/b = 8

Also note that the optimal choice of cc appears to bifurcate into two distinct regions in

the complex a-plane for small value of a. This is due to the loss of rotational symmetry

when (a/b # 1) and suggests that it may be more appropriate to choose ac as a function of

position in this case, i.e., ac = a(p). For larger values of a, the estimate in (8). derived for

circular cylinders is seen to provide an excellent choice in the case of a/b = 8.
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Figure 23: Contours of largest eigenvalues of PM (in dB) as a function of the complex

constant a for elliptical cylinders having a/b = 8

4.3.4 Example Results for TE Polarization

Simulations that follow demonstrate the investigations into an elliptical cylinder

above a rough surface. A MOMI code was produced which includes unknowns on both

an elliptical cylinder and a rough surface. The coupling parameter, ax, on each surface

was chosen to be the optimum for the observation point on the surface. Consequently, a

is the asymptotic value described above on the cylinder and aX = 0 on the surface. The

cylinder was chosen to be elliptical in order to resemble the foliage problem. All of the

simulations which follow use TE Polarization and O/10 sampling. Other parameters
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depend upon the size of the scatterer and its separation from the surface; these include the

following

* incident spot size = 20 to 30k

* surface length = 1 OW to 200k

0 ellipse: major axis = 6X. to 1OX , minor axis = 2k to 2.5X

* height of the ellipse = 20, to 60k. above the mean surface

These variables are identified in Figure 24.

Oi
Major

axis in k Minor axi. in 2.

h

... ......---

Mean Plane I x

Figure 24: Scatterer over a Randomly Rough Surface

The total cross section of the elliptical cylinder and rough surface combination is plotted

in the figures that follow. The far field form of the Hankel function normalizes this value:

jkp-j

e
7kp

This solution which includes the full interaction will be referred to as the "exact

solution".
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In addition to the total cross section of the full interaction problem, the total cross

section of various stages of interaction are also included. First of all, the simple

incoherent addition of scatter power is included; this case will be referred to as

"incoherent addition" (IA) in the examples that follow. This curve will allow the

assumptions of the impulse response method (no interaction) to be compared with a full

interaction solution. Hence, it is equivalent to calculating the total cross of the ellipse and

the surface in isolation and simply adding the resulting power, see Figure 25(a) and

Figure 25(b), respectively. The source in this case is will be referred to as the "free-space

incident field" and the resulting induced currents as the "incident currents."

2

A

3fs
cyl

-fs ]
Jsurf

(a) (b)

Figure 25: The Single Scatter Approximation: (a) Currents induced on the

cylinder in isolation (b) Currents induced on the surface in isolation

The next step is the addition of the first order correction to both the current on the

surface and the ellipse. Thus, after the current on the ellipse is calculated in isolation, its

radiated field is added to the free-space field incident on the surface, see Figure 26(a).

This results in the simple correction of the incident currents and the single scatter currents

due to the ellipse. In turn, this corrected current on the surface is permitted to radiate and

induce a correction to the current on the ellipse. This results in a double scatter event, yet

is still a first order correction to the incident current on the ellipse, see Figure 26(b).

Finally, the composite system with the first order corrected currents is allowed to radiate.

This result is referred to as the double scatter result in the following example results.
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surf and cyl} nc
surf with correction

x
-s lcyl-surfu

jsurf + isurf j f + cyI-surfJsurf + surf

Figure 26: The Single Scatter Approximation: (a) Corrections to currents induced on the

surface (b) Correction to Currents induced on the cylinder

Figure 27: 6 wavelength ellipse, 60 wavelengths above a Gaussian rough surface
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In Figure 27 through Figure 29, we see the effect of separation on the total cross

section for the elliptical scatter/rough surface system by varying the separation between a

6 wavelength elliptical cylinder and the surface. In these figures, the exact total cross

section can be compared with the incoherent addition of the surface and the scatterer

(radiative transfer assumption) and the first order interaction between these parts. It is

obvious from these figures that the double scatter approximation provides a better

estimate of the total cross section of the composite system than the simple incoherent

addition of the cross sections of the individual elements. It can also be seen that a larger

the separation between the ellipse and the surface results in an increasingly better

approximation by the incoherent addition with respect to the exact result. This fact has

been verified by examining the cumulative root mean square error (cumulative with

respect to the observation angles).

Figure 28: 6 wavelength ellipse, 20 wavelengths above a Gaussian rough surface
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Figure 29: 6 wavelength ellipse, 5 wavelengths above a Gaussian rough surface

-Since the agreement between the incoherent addition of the parts and the exact total

cross section becomes closer, we can expect a threshold for the distance at which higher

order interactions become significant. In addition to the separation, this threshold will

most likely depend on the observation direction, the illumination direction and the

orientation of the ellipse. Further numerical studies will be required to find these

relationships. We can see that the calculation of the returned power for most foliage

components will probably not require accounting the higher order interactions. However,

a land-based target buried beneath the foliage, may require accounting for these

interactions.

4.3.5 Conclusions and Future Efforts

The solution of the cylinder above a rough surface serves as a basis for comparison

with the first order multiple scattering approach and ultimately the radiative transfer
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approach. The results from these simulations will justify the requirements for higher

order interactions in the foliage-surface scattering problem. As one would expect, we

have seen an increased importance for the higher order interactions as the scatterer is

moved closer to the surface or its size increases. This method is obviously inadequate as

the number of scatterers increases or as the incidence angle increases since the problem

becomes numerically intractable. The conclusions drawn from the example are not

surprising and include the following

" the iterations required increased as the ratio of the body size to height above the
surface decreased

" the interaction between the surface and the cylinder decreases as the separation is
increased and incidence angle is decreased (measured from the vertical)

* the beamwidth must be significantly larger than the ellipse to see the effects of
multiple scattering

" the single/double scatter corrections significantly improve the estimate for power
returned relative to the simple power addition (at least for small roughness)

In addition, we have seen slower convergence in our technique as the scatterer is moved

closer to the surface. Consequently, a stabilized bi-conjugate gradient solution

(BiCSTAB) in combination with the MOMI has been implemented as an aide for the

convergence of the problem. We note that the application of the BiCSTAB routine to the

MOM equations in one particular example (16k cylinder major axis, 3X above the rough

surface) did not converge within the number of iterations allotted. Likewise, the straight

MOMI solution required 30 iterations. However, when the BiCSTAB routine was applied

to the MOM equations after the MOMI preconditioner was applied, the ellipse and rough

surface system required only 10 MOMI/BiCSTAB iterations.

Two final notes: since these simulations occur with monochromatic waves and the

interest in this work involves pulsed energy, the pulse chosen for comparison will be

slowly varying and of long duration. Primarily, we are interested in the importance of the

interactions, not the solution; consequently, until a time-dependent code is introduced, we

will assume that the importance of the interactions in the pulsed energy problem is

similar to that in the monochromatic problem. In addition, one further assumption of the
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impulse response model requires our attention; the assumption of no wide-angle

scattering. This may be significant for all components of foliage and ground based

targets.
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4.4 Approximate Analytical Solution for the Moments of a Single

Scatterer above a Rough Surface

If it is found that the scatterer above the rough surface includes important

interactions that are not included in the modified first order multiple scattering solution,

this solution must be refined. In addition, if the return from a strong scattering object,

such as a vehicle, under the vegetation is desired, then the coherent return may be

desired. The exact solution for the problem of multiple scatterers above a rough surface

will become numerically intractable as the number of scatterers increase. Consequently,

alternative methods must be used or the exact solution must be simplified. As we have

seen in the previous sections, the exact solution for a single scatterer above the rough

surface in combination with the first order multiple scattering will produce some insight

into the validity of the radiative transfer result. An alternate approach that simplifies the

exact results, yet unlike the first order multiple scattering result, maintains the coherent

response, begins with the exact integral equations and incorporates some reasonable

assumptions. Like the first order multiple scattering response, we begin with a single

scatterer over a rough surface and propose an extension to N scatterers above a rough

surface.

We start with coupled integral equations: one representing the current on the rough

surface and the other representing that on the scatterer. From equivalence, the MIFIE for

the current on the scatterer in the presence of the rough surface can be written

JS1(Y)=2fi ×H'(Y)+2fi x × IIJ(f1')×V'G(f1,'f')dS1
Scatterer
Surface s (1)

Rough
Surface

where the subscripts 1 and - 2 will indicate points or currents on the scatterer and the

rough surface, respectively. The current is evaluated at the observation point, which is on

the scatterer. Note the presence of the term, the last term. From equivalence, the MFIE

for the current on the rough surface in the presence of the scatterer can be written
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js2( 2)=2fi2 xH 1i(f2 )+2fi2 x ffJ,J(f,')xV'G(2, ')dSj
Scatterer
Surface (2)

+2fi2 x f Js 2 (F2') x V'G( 2, F2') dS2
Rough
Surface

The current is evaluated at the observation point, which is on the scatterer. Note the

presence of the coupling, the second term. The geometric quantities in these two

equations are defined in Figure 30.

z

Observation hpoint 2SRs2 h

-- ---- - ---- -- - -- - - - - --- - - -i - - - - - - -

Figure 30: Geometry for the Reduced Integral Equation Approach

4.4.1 The Reduced Integral Representation

The overall goal is to simplify the solution for a single scatterer over a rough

surface. Since the scatterer is assumed to be small with respect to the distance to the

surface, the far-field form of the Green's function will be used for interactions involving

the scatterer as the source and the surface as the observation location. In addition, when
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the object is modeled as a smooth ellipse or a disc, the Physical Optics (P0)

approximation will be used to estimate the induced currents on the scatterer due to the

incident field. In all remaining sections, these two simplifications shall be considered

accurate. Starting with the coupled integral equations and substituting into the integrands

of (1) and (2) in the previous section, we find for the scatterer

JI(f = 2fi, x H'(f) +2fi x sJJ2(i2')xV'G(f,i')dS2  (1)
Rough
Surface

In this formulation, the integral equation for the current on the scatterer still involves two

unknowns. For the currents on the rough surface, we find the following equation

JS2 (F2 ) = 2fi2x WH(12)

" 2i2 x S 2fi  x Fft (F) + 2fi I xx V'G(Y'2') dS2 x V'Gff (2'1') dSI
Scatterer Rough
Stuface LSurface

+2fi2x fI J (f') xV'G(2, 2') dS2
Rough
Surface

(2)

where Gf(r,r') is the far-field form of the free space Greens Function. Those vales with

a subscripted "1" are in reference to the scatterer and those with a "2" are with respect to

the surface. In addition, the primed coordinates reference the sources and unprimed

reference the observation points. This integral equation consists of three terms

1. The first term is the well-known Kirchhoff term

2. The second term couples the currents of the surface to that of the scatterer

3. The third term is the familiar multiple scattering term for the surface to surface

interactions

Notice that the PO current on the scatterer is known; consequently, the only unknown in

the integral equation for the surface current is the surface current itself. Moving the

normal unit vectors inside the integrals and using the vector identity

Ax x =B(A.C)-C(AB) (3)
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Expanding the gradient of the Greens Function:

V'G(i,- = I jk G(, ) + 1 =

where, following the notation of [Ishimaru, 1978], the direction from the source point to

the observation point is given by

1s ( the scattering direction

Employing the far-field approximation, the Greens function and its gradient become

e -JkR
G(,T) --

G47rR
(5)

V'-G(, T) jk e-j  -j-.l = jk G(f, ') is
47cR

where R =- f-'. Further reduction of integral equations is accomplished by assuming

the scatterer has a definite geometrical shape (disc, etc.). In this case the backscatter and

forward scatter from known scatterer geometry may have an analytical result, further

simplifying the integral equations.

4.4.2 Reduction for a Circular Disk (3-D) Scatterer above a Rough Surface

In 3-D, the integral equations were specialized to a circular disc with random tilt and

height above a randomly rough surface and in 2-D, the integral equations were

specialized to a strip with random tilt above a corrugated surface. Only the results of

these derivations will be given in this report. These results should include more

interaction terms with the surface than the first order multiple scattering theory but with

less computational demand than the exact solution. For a flat disc, horizontally suspended

over a rough surface, the current on the rough surface is
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is (2) =2fi=xFI(2) + jk exp{- jkRs} exp- jks 'h)
27tR 2s

fi2 [(-f 2  )(XH~(I))+ 25(n i 2[x j(1)])]exp{-jk 2s F'}dS1'
Si

+2 f{Js(f,') (fi2 2 ,)-(f2 Js( 2 ))t022' }V'G(Y2,Ja') dS2'
S2

+ exp- ikR2S}) {~x jk2}JI(A
47CI(?f 2 R2 5 ) (f 2 SS

-f ~ ~ ~ ~ ~~ _ 2S- " S(Dks [@f2 - 2S)RS 2 - (f2 fZS2)R2S]('jS(f

exp{-jk ,} p {jkh2 S472 S exp. -- S2  '

(1)

where the Bessel Function of the first kind, JI(x), has arisen due to the circular disk and A

is the area of one face of the disk. It has been assumed that the disk is very thin. The first

term is the Kirchhoff current on the surface. The second term, the first integral term, is

an additional Kirchhoff current term due to the incident field from the Kirchhoff current

on the disc: the Kirchhoff current on the disk radiates to the surface. Shadowing must be

accounted for in the use of this term: the Physical optics current on the underside of the

disc, due to the incident field will typically be zero. The third term is the surface in

isolation. Finally, the fourth term is a multiple interaction result: the current on the

surface radiates to the disk and is re-radiated to the surface again ... ad nauseum. Note

that this integral equation has only one unknown: the current on the surface.

The integral equation for the disk simply involves Kirchhoff current and the current

due to the surface radiating to the disk. Note that this equation is fully coupled to the

solution for the current on the surface

87



jf(Y) =22 x fl(f) +

2f JfJ 2 ( 2 )[ t1 + ikJ1  h G(r, F2]+ 70Gi ?'2-jS2 (f2'))}s 2 0
2 s(rZ' + k-=--

(2)

If the surface is gently undulating, the z-directed currents will be nearly zero, hence, the

integral equations for the currents become

Js(2) = 2fi2 x ]IH(f) + jk exp{- jkR2s} exp{ jk .k h}27R2s

I [(- k. R)(2x ,,(F1 )) + f 2S(fi2  2 Xfl,(Y) ])]exp {-j k 2 • '}IdS,'
Sl

+2 Mi{Js 'Y) (fi2 " - ( 2 "Js(f2'))'22' }IV'G(f,2')IdS2'
S2

+ exp{ J kRs } kA exp J2  (kA)+ 4r2R~s R2S

,f~rjs Y^)- h }exp j k2dS2,4,rR2 4 2 R s J

(3)

and

j1(fs -=2 x (f)l + jk hfG, f2' dS
S22

(4)

A more complex result is available for a disk with arbitrary tilt and in 2-D, a strip with

arbitrary tilt.
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4.4.3 Conclusions and Future Work

This section has started with the exact coupled integral equations for a rough surface

in the presence of a single scatterer and reduced these using the far-field form of the

Green's function for the scattered field due to the scatterer and the physical optics

solution to the scatterer's current. Furthermore, we have isolated an approximate integral

equation for the surface scattering in the presence of the disk. This integral equation only

involves one unknown, the current on the rough surface.

In addition we have simplified the expression for a scatterer that is a circular disk. In

addition, the term that represents the multiple interactions between the scatterer and the

surface has been isolated and should be evaluated relative to the surface in isolation. This

investigation will yield an analytical solution as to the validity of the single interaction

assumption for the radiative transfer result. The next step in this process is to numerically

implement the above integral equations. These results may then be compared with those

obtained with MOM/MOMI. Concurrently, the average results will be attempted

analytically for a random height and then the random orientation. These results should be

implemented numerically.

In the extension to N scatterers above a rough surface, no interaction between

scatterers will be accommodated; the result will include interaction with the surface, like

the first order multiple scattering result. Unlike the first order multiple scattering result

discussed earlier, these results will include a more comprehensive treatment of the

interaction with the surface in addition to the preservation of the coherent field.

Numerical solutions and comparison with MOM results for two to three scatterers can be

performed in an effort to assess the mutual interactions among the scatterers themselves

(ignored by the presented single scatter theory). An attempt to derive analytic expressions

for the field moments from these equations will be made, including the mutual coherence

functions.

In addition to a volume return component, this reduced integral equation formulation

result will produce the most comprehensive treatment of the scattered field from a

collection of scatterers above a rough surface. We note that many useful methods already
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exist which predict both the coherent and incoherent responses from a volume of discrete

scatterers that may be combined with these results in order to produce a comprehensive

model. These include the DWBA [Lang, 1981], Cumulative Forward Scatter, Single

Backscatter theory [deWolf ,1971], its extension to pulse propagation [Ishimaru,1980]

and the related spectral approach [Rino, 1988].
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5 Conclusions and Future Action

In predicting the radar return from vegetation, a number of approaches have been

developed. Typically, the overly cumbersome radiative transfer seems to be very popular.

Exceptions to this trend have been found in the works of [Schwering, 1985], and [Brown

and Adams, 1998a]. Schwering has used a simple scattering function to represent the

scattering properties of all components of the volume. -A notable wave approach to this

problem is that of Lang [Lang, 1981] who has used the Distorted Wave Born

Approximation. In this study we have formulated a simple model that is numerically

efficient and depends on the empirical identification of effective parameters. However,

there are a number of verification studies that must be performed and several different

levels of verification have been outlined in this report. The major thrust of these

verifications is to identify the necessary level of approximation for the foliage-surface

interaction.

The Impulse Response (Convolutional) model allows a superposition of surface and

volume responses. Its numerical implementation is via the Fast Fourier transform, FFT,

which allows a fast numerical solution. This approach, although originally derived from

the radar equation and then by the radiative transfer equations, has been shown to be

equivalent to the "first order multiple scattering theory." This equivalence has been

derived under the assumptions of narrow-band and narrow-beamwidth with a limited

scattering pattern. From this equivalence, we have proposed a method using the first

order multiple scattering to verify the single passage assumption for foliage-surface

interaction that is inherent in the radiative transfer approach.

The future direction of this work will involve thoroughly investigating the

assumptions of the impulse responses and consequently, establishing the range of their

validity; these investigations may in turn expand the applicability of the model.

Generalizing the model to include lower frequencies, larger beamwidths, etc. will require

an investigation into the range of validity of each of the above limitations and may

involve generalization of the model. Some of these investigations and extensions have

been performed. The most straightforward model improvement will be the addition of
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polarization. The use of the Stokes vector will allow for polarization dependence in the

model. Depolarization will enter naturally through the Stokes vector definition, existing

models, and measured data. After accounting for the polarization effects, the incident

beam waveform can be given a pulse shape. This pulse will be constructed using Fourier

analysis in order to recreate pulse scattering with an incident beam using a full radiative

transfer approach. This pulsed waveform result is then directly comparable to our

impulse response model. For large bandwidth signal, each Fourier component of the

pulse may be treated separately in radiative transfer theory; hence, the scattering

characteristic of the scatterers can be changed with frequency. When derived from the

single (or higher order multiple) scattering approach, the impulse response model will

require a more general form for the two frequency mutual coherence function.

Investigations into the other approximations will require investigations into the effects of

wide-angle and multiple scattering.

The effects of multiple scattering may be established by inserting the next higher-

order scattering correction in our model. Through these corrections, we may estimate the

system parameters or foliage and surface conditions that will either cause the model to

fail completely, e.g. become grossly invalid, or give rise to significant changes in the

expected effective parameters in the model. Beginning with the development of the

impulse response method using multiple scatter theory, we have developed a rigorous

formalism that will simplify to the impulse response model under the given assumptions.

Under this model, higher order scattering corrections may be added in each of the

interaction regions: foliage-foliage, surface-surface or foliage-surface. For example,

known numerical techniques may be applied to correct for multiple scattering among

surface elements; the applicability of the facet model used by the impulse response model

may be directly compared with these numerical techniques. The multiple interactions and

the effect of wide-angle scattering between the foliage constituents and the surface can

also be implemented numerically but this creates a numerically intractable problem as the

number of foliage components grows. Hence, we have looked to reduce this problem and

only characterize the important interactions between the foliage and the surface.
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Although the mutual interactions between the scatters comprising the vegetation are

neglected in our first order model, some interaction between each of these scatterers and

the surface may be non-negligible. In the first order model, the backscattered power

density from the rough surface and the foliage volume separate into two distinct

components. Consequently, by construction, this model assumes that there is no

interaction between the surface and the volume scattering elements other than the

exponential decay of the surface scattered power through the volume. In the course of our

research, we have developed an exact integral equation approach that simulates the

interaction of a one-dimensional, statistically rough surface in the presence of an

elliptical cylinder at some distance above the surface. This effort is necessary in order to

compare the first order multiple scattering result with a result with known accuracy.

These results provide a basis of comparison for the impulse response.

Implemented via the MOMI method of solution to the MOM problem, this numerical

model permits the specification of each order of interaction that is present in the result,

e.g. the first and second order interactions, between the scatterer and the surface. To

accommodate strong interactions between surface and foliage, several advanced

numerical techniques have been (will be) implemented, e.g. the method of multiple

ordered interactions, the stabilized bi-conjugate gradient algorithm and the fast multipole

method. The results presented are restricted to the TE incidence but they have also been

extended to the construction of the MOMI model for TM polarization for an elliptical

cylinder over a rough surface. We have found that a simple incoherent addition of the

scattered power will be accurate for most foliage components; this will depend on the

ratio of the scatterer's largest dimension to its displacement above the rough surface. A

large object such as a target embedded within the foliage, on the other hand, will require

multiple scattering and wide-angle corrections for an accurate scattering prediction. It has

been observed that the interaction between the surface and a nearby object can be

significant, particularly when the scatterer is closer to the surface and as incidence angle

is further removed from nadir.

If these interactions between surface and scatterer have a significant effect on the

returned power waveform, we may resort to the full first order multiple scatter theory,
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which includes wide-angle scattering. This theory will more fully account for foliage-

surface interaction and extend the impulse response model. Although this will add

complexity to the model, some advantages of the convolutional approach may be

retained. A plan has been presented to extend the first order multiple scattering solution

for foliage and foliage-surface interaction to both broadbeam and broadband cases: this is

not possible in the radiative transfer approach as presented. By including double

scattering events (scattering between the foliage and every surface component), the

assumption of pure forward scatter and backscatter will be abandoned. Through this

extension of the impulse response method each component of the foliage will interact

with every surface element (facet) rather than a single surface element. This numerical

model may also be used to establish the multiple scattering significance for a target

embedded within our vegetated surface. Such a target may be found through a

comparison of the return waveform from the vegetated rough surface with that of the

vegetated rough surface with an embedded target. We may then tailor our system

parameters (pulse length, beamwidth, etc.) to more readily identify its presence.

The full, first-order multiple scatter theory will also test the validity of the narrow

beamwidth assumption in the foliage-surface interaction. However, for the foliage-foliage

interaction another more complete test will involve a solution of the unsimplified

radiative transfer equation. This solution will test the effects of higher orders of multiple

interactions on the received waveform. This assumption presumes that the returned power

is confined to a small region around the transmitting beam axis. Beam broadening

through wide-angle scattering and multiple scattering in a tenuous media can be

neglected if the receiver and transmitter beamwidths are narrow since multiple scattering

effects and wide-angle scattering are negligible within a small illuminated volume.

Through comparison with the impulse response model, a range of validity for the narrow

beam assumption will be established. Although the steady state solution of the radiative

transfer equations for a plane wave incident to a random media is widely available in

literature, this solution must be extended to account for an actual antenna pattern. To this

end, we have constructed a radiative transfer solution for beam incidence and are in the
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process of evaluating the role of multiple scattering, wide-angle scattering and beam

broadening.

In addition to the impulse response approach, a second analytical approach has been

formulated which begins with the exact integral equations. We hope to find an analytical,

or at least computationally efficient, solution to both the mean and second order, time

dependent power density for the single scatterer above a rough surface. Like the impulse

response approach, the incoherent results for the superposition of N scatterers will

provide a new look at the single scattering theory for an ensemble of particles above a

rough surface and should serve as a check against the impulse response result. However,

unlike the impulse response method, this approach will provide the coherent field

returned from the volume and the rough surface and it will include higher orders of

multiple scattering. This result should be directly comparable to the Distorted Wave Born

Result (DWBA), see [Lang, 1981]. Hence, one additional task includes constructing a

DWBA model including a rough surface, based on Lang's work and in order to compare

with this reduced integral equation result.
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Appendix A First Order Multiple Scattering

The simplest approach to propagation through a random media is via single scatter

theory. Single scatter theory retains its simplicity by incorporating the assumption that

the field incident on a random media interacts with each scatterer only once and no

multiple interactions occur among the scatterers that encompass the random media. This

creates a scattered field, which is a power-like summation of scattered power from each

scatterer.

In a previous section, the impulse response approach was introduced as an efficient

means for computing the average intensity from a rough surface. In this section this

impulse response technique is again extended to a tenuous (sparse) random media

covering a rough surface. Like the radiative transfer extension, this method will use the

convolutional approach. Unlike the extension from the radiative transfer theory, the

following method applies the convolutional approach to a strongly scattering, yet tenuous

media, which accounts for scattering out of the radial path with respect to the antenna; the
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radiative transfer approach only accounts for strictly forward scattering and

backscattering.

A. 1 Review of Classical Single Scatter Theory

Assuming plane wave is incident on the scatterer, the incident field and the associated

mean power density in free space are written as

i(fr)= EOe - jiiki'  S = i(r)x i ( ) t i(r2fki

2 21

(1)

where the incident direction is denoted by k1i and the impedance of free space is given as

110 = F0

In the development of the single scatter theory in a random media, the total received

power, PR, is written as a summation of the power scattered once by each particle. This

simplification is due to the randomness of the scatterers in the media: all interference

effects are neglected [Ishimaru, 1997]. The scattered field, E(i), and power density, Ss,

due to the scatterer can be represented as

Es(r)- - f(ks ki) exp(-jkR) ,

R 2 21lo

(2)

where f(ks ki) is the scattering amplitude, R is the range from the radar to the particle

and the incident direction is denoted by k1 and the scattering direction is denoted by fc,.

Next we make several definitions concerning the radar cross-section of this scatterer.

First is the differential radar cross-section, ad for given incident and scattered field

directions
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ad (iiI is)= { } R S = If(ki 1

(3)

Consequently, the backscattering cross-section will be denoted as a b which will imply

the following: 4 7rcd (ki,-k i ). Another important cross-section in this work is the total

observed cross-section (the scattering cross-section), a s . Denoting a differential unit of

solid angle as dM, this cross-section is written

a s = Jffad dQ
47c

In the development of the single scatter theory in a random media, the total received

power, PR, is written as a summation of the power scattered once by each particle. This

simplification is due to the randomness of the scatterers in the media: all interference

effects are neglected [Ishimaru, 1997]. Consequently, summing up the power, PR,

returned from a continuum of scatterers to the radar from a random media due to the

transmitted power, PT, can be expressed using the standard radar equation

PR= PT r )?2 [G ( o '  ) ] 2 pab (O'b dV

V (4C) 3 R 4  dV

(4)

where: X = wavelength of the carrier

G(O, q) = radar antenna gain in the direction (0, 4) or 1j

GOb(, @) = particle backscattering cross section per unit area

dV = elemental volume

R = slant range from the radar to dV

p = particle density per unit volume

In this expression the transmitted power is assumed to be a continuous wave signal;

consequently, the frequency dependence is monochromatic and monochromatic
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dependence is implicit in the backscattering cross-section and the transmitting and

receiving subsystems as well as any assumptions related to the intervening media.

In an attempt to improve this formulation, an accounting for the loss into the media

from the source to the scatterer has results infirst order multiple scattering and takes the

a modified form with respect to the previous expression for the received power [Ishimaru,

1997]. This modified form can be described as follows. Once the absorption of the

scatterer is included, this lost energy, represented by the absorption cross section, ra, is

added to the scattering cross section to form the total or extinction cross section,

a t = a a + Ys . Hence, as a coherent wave travels through an uncorrelated random

media, the coherent field is diminished by the total cross section of the scatterers

encountered. Hence over a differential change in distance, the coherent power density can

be written as in the following expression

aSi(R;ki) = -at(R;ij)si(R;lj)

aR

Hence the incident power density at the elemental scattering area, dV, at a depth R into

the media can be written as

Sj(R;ki)= Sj(R 0;li0expj- Cp~atdRJI

where (a,) is the average total cross section. In terms of the transmitted power

PT G(O,4)exp{- I0R patdR I
Pi 47tR 2

Note the lack of any forcing or source terms since energy cannot scatter into the coherent

field when the media is random with no correlation among the particles. The power

received by the antenna is then expressed as
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PR = PT ff 2[G(O0)12 b(0 ) exp{-2fRPGtdR dV
volume of (47t)3 R 4

scatterers

(5)

This power density returned is identical to the power density predicted by the

convolutional radiative transfer result; however, the integrations have been re-arranged

and time dependence is ignored at this point.
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A.2 The Scattered Pulse

In order to construct the response of the media to a scattered pulse, the correlation of

the output-scattered fields must be derived. Loosely following the notation and

development of Ishimaru [1997], a general expression for the correlation is found in the

following equation

B"(t1 ,t2 J dco1 j do 2Ui (co)U:(w)
2)F exp{- j(ot 1 - o2t)}

(6)

where U i (o)) is the complex envelope of the incident wave form at the time harmonic

frequency o and r' is the two-frequency mutual coherence function. The two-frequency

mutual coherence function is the correlation of the time-varying, frequency domain

transfer function, H(o,t), at two different frequencies and two different times

F---F(O + 0200 +o)2 ;t1 ,t 2) = (H(o 0 + o1,t)H(wo + W02 ,t2))

(7)

Once the two-frequency mutual coherence is constructed, the scattered intensity is found

when tj = t2 = t and r - r0 [Ishimaru, 1997]

I(t)= fA d(o f0 d2U,(o1 )Ui*(0 2 )Fo exp{- j(oI -0 2 )t)

(8)

In first order multiple scattering theory, the transfer function at a single frequency can be

simply derived from the transform of the spatial scattering function f(kj,) modified by

the loss in the media and gain of the antenna at the given frequency. For simplicity,

antenna gain at a given frequency for monostatic operation can be represented as follows

GR(0, ; o) = GT(0, ;o)) = G(c0)

(9)
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Note the monostatic assumption: transmitting and receiving directions are identical.

Next, we rewrite the gain of the transmit antenna as

1 - 2

-GT( k,co) = i47r

(10)

Additionally, assume that the gain on transmit and the effective aperture area on receive

are represented by

-cGR(o) = g2 (co)

47r

(11)

Assuming the media is stationary in time, the frequency domain transfer function at the

single frequency co, can be expressed as follows [Ishimaru, 1997]

H(o)= gT(o)gR(O)F(o)--R expl-2f£ p(at)dRI

(12)

where, the Fourier transform of the scattering function at a given frequency yields

F(co) = F(co;isk,ki) = {f(ks,k i)}

Once the two-frequency mutual coherence function is constructed, the backscattered

intensity has been foundF! J( 1 2R "
I(t) = J [I fA(Wo1, t - 2R ijeJc)tdo 1  JA o2 , t _ - eJw2tdo 2 pdV

volume of c -o c
scatterers

(13)

where

A(t,con) = Ui(o 0n)F(co.;k,,kj)gT(co)gR(co)---"- exR -2jop(at)dR}
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U i (o ) = the complex envelope of the incident signal at the frequency, con

and the asterisk signifies the complex conjugate. When the bandwidth of the pulse is

narrow with respect to the carrier frequency, the narrow-band approximation can be

made. In this case, the scattering function, as a function of frequency, is roughly constant

and can be evaluated at the center, carrier frequency. Once this narrow bandwidth

approximation assumption is made, the only frequency dependence in the two-frequency

mutual coherence function appears in the Fourier kernel. A change of variables to the

difference frequency Cod =) 1 - co2 yields a simpler expression. The two frequency mutual

function for a narrow band input signal becomes [Ishimaru, 1997]

Fo  IF((o)l 2 exp{jco2R/c}pdVR 4

(14)

When a finite number of discrete scatterers is present, in contrast to the formulation

above, the volume integration over the density of scatterers will be replaced with a

discrete summation.

With the narrow beamwidth and narrow band approximations, the inverse transforms

are easily performed and the backscattered waveform reduces to [Ishimaru, 1997]

G(t) = G2  ) P (0 ,) exp{- 2 , R}u t dV
volwn of (47c) 3R ) 2
scatterers

fff 4 b T(01)ep
VOIU of (47r) 3R P ()) exp{-2Jk(R)dR P, P(t -- V
scatte .rs

(15)

Rearranging the order of integration, this can be seen to be equivalent to the radiative

transfer result derived in Chapter 3. Assuming a the speed of light is the same

everywhere, the radiative transfer approach yields

I(-; r, 0, 0, t) = r 0+4(x)sec0+dsecO ab (a)I t -- 2f a+(x)sec k A(p)dI

) ',0+4(x~sec~t er )0 )
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When we integrate this radiative transfer result over the surface, substitute for the

incident intensity, simplify the limits and compensate for the effective receiving area of

the antenna, identical results are realized for the radiative transfer (see Chapter 3) and the

first order multiple scattering approaches.
oo27__.. 2 )220 o1( ) R  PT( --a

PROt) =ffI a)(4C)  3 tex- 2 f, ke(g)dt da pdodp

0 0 L()R41 c0 J ~ R dd

(16)

In addition, note that the particle density per unit volume, p, is assumed to be unity.

Like the radiative transfer result, the first order multiple scattering result can

accommodate a spatially varying velocity and may be re-cast into a convolutional,

impulse response form when the narrow-band and narrow-beamwidth approximations are

employed. More importantly, a further limitation of the radiative transfer approach has

been identified: use of a narrow bandwidth approximation. This assumption is expected

due to the use of constant forward and backscatter coefficients with respect to frequency

in deriving the radiative transfer results. The use of the narrow beamwidth approximation

has already been identified in the radiative transfer approach. However, using the full

expression for two-frequency mutual coherence function, it is possible that the impulse

response approach may be extended to broader bandwidth pulses in addition to broader

beamwidth antenna patterns while maintaining some convolutional aspects. This premise

is still under investigation.
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ABSTRACT strategies has been considered in [1-8]. The impact of non-
homogeneity on STAP performance is considered in [8-11].We derive the nonhomogeneity detector (NHD) for non- The works of [ 1--4,8, 12] have addressed the use of the non-

Gaussian interference scenarios and present a statistical anal- hoo detector (Nve ased the geeralize in-

ysis of the method. The non-Gaussian interference scenario
ner product (GIP) measure for STAP problems involvingis assumed to be modeled by a spherically invariant random Gaussian interference scenarios. This work was extended

process (SIRP). We present two methods for selecting rep- sian in scenrio The effects etended

resentative (homogeneous) training data based on our sta- significantly in [13,14] to include the effects of finite sam-

tistical analysis of the NHD for finite sample support used ple support used for covariance matrix estimation. How-
ever, the corresponding problem for non-Gaussian interfer-

in covariance estimation. In particular, exact theoretical ex- ence co re eig lem fornon .

pressions for the NHD test statistic probability density func- ence scenarios has received limited attention.
In this paper, we derive the NHD for non-Gaussian in-

tion (PDF) and its moments are derived. Additionally, we

note that for SIRP interference, a simple transformation of terference scenarios, which can be modeled by spherically
invariant random processes (SIRP) and present a statisticalthe NHD test statistic admits an elegant representation as anlssothreuatNH tstttiicIngeate

the ati ofa cntra-F istibued ando vaiabe ad a analysis of the resultant NHD test statistic. In general, the
beta distributed loss factor random variablea problem of non-homogeneity detection for SIRPs is quite

difficult due to the fact that the underlying SIRP covari-

ance matrix and characteristic PDF are unknown. For con-
1. INTRODUCTION venience, knowledge of the SIRP characteristic PDF is as-

sumed in this paper.
An important issue in space-time adaptive processing (STAP)
for radar target detection is the formation and inversion of 2. PRELIMINARIES
the covariance matrix underlying the clutter/ interference.
In practice, the unknown interference covariance matrix is Let x = [x1 X2 ... XM]T denote a complex spherically
estimated from a set of independent identically distributed invariant random vector (SIRV) having zero mean, positive
(iid) target-free training data which is assumed to be rep- definite Hermitian covariance matrix R and characteristic
resentative of the interference statistics in a cell under test. PDF fv (v). The PDF of x is given by [15]
Frequently, the training data is subject to contamination by
discrete scatterers or interfering targets. In either event, f(x) = 7r-MIR-'h2M(q) (1)
the training data becomes nonhomogeneous. As a result,
it is non representative of the interference in the test cell. where denotes determinant and

Estimates of the covariance matrix from nonhomogeneous q = xHR-lx
training data result in severely undernulled clutter. Conse- ( V-2Mexp( - ))fv (v)dv. )
quently, CFAR and detection performance suffer. Signifi- h2M(W) = fo V d

cant performance improvement can be achieved by employ- Every SIRV admits a representation of the form [16] x =

ing pre-processing to select representative training data. zV, where z has a complex-Gaussian PDF,. CN(0, R), and
The problem of target detection using improved training V is a statistically independent random variable with PDF



fv (v). In practice, R and fv (v) are unknown. For the pur- where
pose of this paper, we assume knowledge of fv (v) and treat h' (q-)

the problem of non-homogeneity detection with respect to ci = h2M(qi) (4)
unknown R. h'M(w) = OhzM(w) = -h2M+2(W)

Previous work [1-4,8, 12-14] employed the GIP based

NHD for Gaussian interference scenarios. However, the and qj = xH -1xi, i = 1, 2,... K. Clearly the transcen-
GIP based method relying on the statistics of Q = xHRlx dental nature of the estimate precludes obtaining a closed
is unsuitable for SIRV interference scenrios. This is due to form solution. Consequently, [19] used the EM algorithm
the fact that the covariance matrix estimate for this problem to obtain an iterative solution to the problem. We adopt the
can be obtained to within a constant of the covariance ma- approach of [19] for obtaining the covariance matrix esti-
trix underlying the Gaussian component of the SIRV. Typ- mate in this work. A derivation of the covariance matrix
ically, this constant is unknown in practice. Consequently, estimate is contained in Appendix A. It is shown in Ap-
the PDF of Q, its moments, and the threshold setting for the pendix A that the EM algorithm at convergence produces an
goodness-of-fit test proposed in [13] cannot be determined, estimate which is to within a multiplicative constant of the
Consequently, we seek a test statistic, which is invariant to covariance matrix estimate of the Gaussian component un-
the unknown scaling. derlying the SIRV. Details pertaining to the initial start and

convergence properties of the EM algorithm can be found

3. NONHOMOGENEITY DETECTOR FOR in [19]. The next step is to use this estimate in a maximally
NON-GAUSSIAN INTERFERENCE SCENARIOS invariant decision statistic for non-homogeneity detection.

Let x -, SIRV[O, RT, fv (v)] denote the complex SIRV 3.2. Maximally Invariant NHD Test Statistic
test data vector, where RT is unknown. Further, xi, i =
1, 2,... K denote iid complex SIRV[O, R, fv (v)] target The maximal invariant statistic for different scaling of test

free training data. For homogeneous training data, RT = and training data is given by [17]

R: = R. The first step in deriving the NHD detector for sHftix2
SIRVs involves obtaining the maximum likelihood estimate ANAMF = [sHR _1 s][xHf -r X ]  (5)
of the underlying covariance matrix. This estimate is then
used in a test statistic which exhibits maximal invariance where s = M[1 1 ... 1]T. Invariance properties of
with respect to the unknown scaling of the estimated co- tit r e
variance matrix. The resulting test statistic takes the form the test statistic of eq (5) and its geometrical representa-
vfariancmaie. adate stite statiti takes h tion have been studied in [17] and references therein for the
of a normalized adaptive matched filter (NAMF), which has

case of Gaussian interference statistics using a sample co-been extensively analyzed in [ 17,18] and references therein,. ainemti siae n ipitreechwvr
variance matrix estimate. In SIRP interference, however,

each training data vector realization is scaled by a differ-
ent realization of V. Consequently, maximal invariance of

The unknown covariance matrix is estimated from target the test statistic of eq (5) afforded by the sample covariance
free training data consisting of independent identically dis- matrix estimate no longer applies. This is due to the fact

tributed SIRVs sharing the covariance matrix of the noise in that the sample covariance matrix is no longer the maxi-
the test cell. Maximum likelihood (ML) estimation of the mum likelihood estimate of the covariance matrix for SIRV
covariance matrix for SIRVs was first considered in [19]. scenarios. However, using an estimated covariance matrix
The work of [19] showed that covariance matrix estimation of the form of eq (3) restores the maximal invariance prop-
for SIRVs can be treated in the framework of a complete- erty of the test statistic of eq (5). This is due to the fact that
incomplete data problem and pointed out that the maximum the resultant covariance matrix estimate is to within a mul-
likelihood estimate of the covariance matrix is a weighted tiplicative constant of the covariance matrix corresponding
sample matrix. Since the problem does not permit a closed to the Gaussian component of the SIRV.
form solution, [ 19,20] uses an iterative method known as the
expectation-maximization (EM) algorithm. More precisely, 3.3. PDF and Moments of the Non-Gaussian NHD Test
let xi, i = 1, 2, ... , K denote independent identically dis- Statistic
tributed training data sharing the covariance matrix of the The PDF and moments of the NHD test statistic are readily
test data vector x. The work of [19,20] shows that the ML determined in terms of the corresponding quantities of an
estimate of the covariance matrix is given by equivalent random variable defined by

K

K = cixixH' (3) ANAMF (6)
K i=1 A - ANAMF



It has been shown in [17,21,22] that Aeq admits a represen- 150 NHD Test Statistic PDF

tation as the ratio of an F-distributed random variable and a
beta-distributed loss factor. In this effort, we are interested
in the PDF of ANAMF under the condition where no tar- M=64 [- -g
get is present in the test data vector x. Specifically, it can be 100 K=4M
shown from the work of [ 17,21,22] that the PDF of ANAMF

is given by

fANVAMF(1r) L(1 - y)fr(-)(1 - r)L"-ldy (7) 50

[1 - -yr]L+l

where L = K - M + 1 and F is the loss factor random
variable, whose PDF is given by

fr('Y)1 
(8 L 

0.2 0.4 r 0.6 0.8 1

O3(L + 1, M - 1)

The mean of ANAMF is somewhat difficult to calculate. Fig. 1. NHD Test Statistic PDF

Consequently, we work with the mean of Aeq given by -

K -K-3M
E(Aeq) =(9) M=64 K=41M

(K - M)(M - 2)" (-9)5M

The statistical equivalence of Aeq to within a scalar of the 1o.
ratio of a F-distributed random variable and a beta-distributed
loss factor in that it permits rapid calculation of the mo-
ments of Aeq. More importantly, it is extremely useful in
Monte-Carlo studies involving simulation of ANAMF. For 10,
homogeneous training data, the use of (6) circumvents the
need to explicitly generate the test data vector x and the
training data vectors used for covariance estimation. For
large M and perforce K. significant computational savings 100 0 0050.15 0.2 0.25

can be realized from the method of (6). It is instructive to Threshold (q1)

note that the PDF of ANAMF as well as its mean depend
only on M and K, which are under the control of a sys- Fig. 2. Type-I Error vs Threshold for NHD Test Statistic

tem designer, and not on nuisance parameters such as the
true covariance matrix underlying the interference scenario. is chosen. The threshold, , is determined by a numerical
Furthermore, for K -4 oc the mean of eq (9) converges inversion of eq (10). Realizations of ANAMF, which exceed

to E(Aeq) - 2)' corresponding to the mean of an 7 correspond to nonhomogeneous training data. A second

F-distributed random variable, test for training data nonhomogeneity is based on compar-
ing each realization of Aeq with its theoretically predicted

3.4. Goodness-of-Fit Tests mean given by eq (9) and retaining those realizations which
exhibit the least deviation. Performance analysis of these

Since the PDF and mean of ANAMF are known, a formal NHD methods is presented in the next section.
goodness of fit test can be used for non-homogeneity detec-
tion in non-Gaussian interference scenarios. In particular, 4. PERFORMANCE ANALYSIS
we form empirical realizations of ANAMF from each train-
ing data realization using a moving window approach. In Performance of the goodness-of-fit test with simulated and
this approach each training data vector is treated as a testZ measured data is presented here. Figure I shows the plot
cell data vector, whose covariance matrix is estimated from of the PDF of ANAMF with K as a parameter. Observe
neighboring cell data according to eq (3). We then test for that the variance of ANAMF decreases with increasing K.
statistical consistency of these realizations of ANAMF with Figure 2 shows a plot of the Type-I error versus the thresh-
the PDF of eq (7). For this purpose a convenient type-I error old, r1, with K as a parameter. For a given type-I error, the
(typically between 0.01 and 0.1) given by threshold decreases with increasing K, in conformance with

e I fr (-Y))]d-y (10) the results of Figure 1. Figure 3 shows the performance
PeI= [1 + (1 (0 of the goodness-of-fit test for simulated homogeneous data
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from the K-distribution [15] with shape parameter 0.5 us-
ing the covariance estimate of eq (3). The results reveal the
lack of nonhomogeneity in that no realization of ANAMF The NHD) test statistic, ANAMF, and the threshold, i], areexceeds the threshold. Figure 4 shows the performance of plotted as a function of range. Statistical analysis of the data
thed oodess-o-fithestd. iure nonhogs K-dsoried o indicates that the data is well approximated by the Gaussianthe goodness-of-fit test in non-homogeneous K-dsitributed distribution. This fact considerably simplifies the analysisclutter w ith shape param eter 0.5. T he K -distributed am pli- in t a th co r a ce m r x es m te s s mp y he a pltude PDF is given by in that the covariance matrix estimate is simply the sample

covariance matrix. Non-homogeneity of the training data is
f() +ra K, (Or) r > > 0 evident in those bins for which ANHD exceeds 77. Figure

R(r) () 6 shows the results from the selection procedure based on

where 3i and a are the distribution scale and shape param- comparing the empirically formed Aeq with its theoreticallywher fland ae th ditriutin sale nd hap paam- predicted mean given by eq (9). The data set used for this
eters, respectively, K, (.) is the modified Bessel function of peis ien to t he data used in t

the second kind of order v and r(.) is the Eulero-Gamma example is identical to the data used in Figure 5. Relevant
test parameters are reported in the plot. We observe a signif-function. Small values of result in heavy-tails for the PDF icant increase in the number of deviations from the theoreti-

of (11). The corresponding Iv (v) and h2M (.) are given by cally predicted mean given by eq (9). This is due to the fact

2)3 (fv)2a- exp(_fl2v2) 0 < V< that we are dealing with a limited number of realizations of
r() 2 (/M  

M (12) the NHD test statistic.h2M(W) = 2"m(0 V,/w) - K. -M(2 0 -/w-)

Nonhomogeneity of the data is evident in those range bins 5. CONCLUSION
where ANAMF exceeds 77. Figure 5 shows the results of the
goodness of fit test for the MCARM data [23] using acqui- This paper provides a rigorous statistical characterization
sition 220 on Flight 5, cycle e for 8 channels and 16 pulses. of the NHD for non-Gaussian interference scenarios which



can be modeled as a spherically invariant random process. Proceedings of the Adaptive Sensor Array Processing
It is noted that the NHD statistic admits a simple represen- Workshop (ASAP), (MIT Lincoln Laboratory, Lexing-
tation in terms of a ratio of an F distributed random variable ton, MA), 1996.
and a beta distributed loss factor. A formal goodness-of-fit
test based on this representation, which follows a random- [7] D. Rabideau and A. Steinhardt, "Improved adaptive

ized F-distribution, is derived. Performance analysis of the clutter cancellation through data-adaptive training,"

method is considered in some detail using measured data IEEE Trans. on Aerospace and Electronic Systems,

from the MCARM program. The illustrative examples val- vol. AES-35, no.3, pp. 879-891, 1999.

idate the approach taken and confirm the results. Future
work would include extensive performance analysis using [8] B. Himed, Y. Salama, and J. H. Michels, "Improved
simulated and measured data showing the resulting impact detection oP close proximity targets using two-step
on STAP performance. The performance of several STAP NHD" in Proceedings of the International Radar
algorithms in Gaussian and non-Gaussian interference sce-
narios has been considered in [18]. Future work will ad- [9] R. Nitzberg, "An effect of range-heterogenous clut-
dress performance of the methods treated in [18] with suit- ter on adaptive Doppler filters," IEEE Trans. on
able NHD pre-processing. Aerospace and Electronic Systems, vol. 26, no.3,

pp. 475-480, 1990.
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Appendix A: EM Algorithm for Covariance Ma- ci = E[V- 2IR, xi]. (18)

trix Estimation Note that f(vI) = f(v 2 ) = ... = f(vK) = fv(v) (since

We discuss the maximum likelihood estimation of the SIRV vi, i = 1,2,... K are independent identically distributed

covariance matrix in this appendix. Let X denote a data random variables). Therefore,

matrix, whose columns xi i = 1, 2, . ., K are indepen- fxivi, A)fV)
dent identically distributed target-free training data vectors, fVlxi, ft(vilxi, A) = x (19)
which are distributed as SIRV[O, R., fv(v)]. The likeli- fx&IA(x4R)

hood function for estimating R if given by However,

K f(xilvi, R)fv(vi) = vi 2Mexp(qiv7 2 )f(vi)
g[XIR] = f MIR-lh 2M(qi ) .  (13) fXA(Xilft) h2M(qi) (20)

i=1

Consequently,
Direct maximization of the likelihood function of (13) over h'2M(qi)
R is rendered difficult due to the fact that there is miss- ci = E[V 21R, xi] = (21)
ing information. Consequently, it is helpful to treat the h2M(qi)

problem in the context of a complete-incomplete data prob- Having specified the complete data sufficient statistic, we
lem [ 19]. Recall from the representation theorem for SIRVs seek the maximization of (17). For this purpose, we re-
[16] that xi = ziVi, where zi, i = 1, 2,... , K are sta- produce the following matrix differentiation identities from
tistically independent CN(O, R) random vectors, and Vi [24].
i = 1, 2,... , K are statistically independent random vari- 6[R - 1] = -R-1[R]R - (
ables with PDF fv (v). For this problem, the complete data 5[loglR - 11] = -tr{R-1J[R]} (22)



Further, we recognize that qj = Fi K tr[R-lxixf. Con-
sequently,

K

JLI[X, Vi R] = Ktr{R- 1 [R]}-tr[R-'J[R]R - ' eixixHf].
i=1

(23)
Maximization of (17) results from setting (23) equal to zero.
Therefore, the maximum likelihood estimate of R is given
by

K
it CixixH (24)

i=1

Clearly the transcendental nature of the estimate precludes
obtaining a closed form solution.

In summary, the EM algorithm for the problem of co-
variance matrix estimation considered here consists of the
following steps.

1. E-Step: Given an initial estimate of R denoted by R,
calculate ci for i = 1, 2, . ., K.

2. M-Step: Calculate A. = _k EK=CiXiX.

3. Iterate until convergence. Convergence is determined
through a suitable error criterion.

In this paper, the convergence criterion is an error of 10 .6
defined to be the absolute value of the difference between
the values of R resulting from two successive iterations.
Convergence of the algorithm is dictated by the choice of
the initial estimate of R. Any positive definite Hermitian
matrix is suitable for the initial estimate of R. Two choices,
that arise readily are the M x M identity matrix and the
sample covariance matrix given by S = k = xKx . We
employ the latter choice in this paper due to the fact that it
yields faster convergence.

The simulated data examples considered in this paper
involve the calculation of the modified Bessel function of
the second kind for specifying h2M(.) and its derivative.
Numerical errors in their calculation for a = 0.1 tend to be
rather large. Consequently, convergence of the algorithm is
extremely slow for a = 0.1.


